[1]
M.C. Song, J.L. Zhang, C. Yu, M.J. Wang, C. Liu, Y. Liu, Experimental study on WEDM machining of PCD and PCBN compacts, Key. Eng. Mater. 645-646 (2015) 52-57.
DOI: 10.4028/www.scientific.net/kem.645-646.52
Google Scholar
[2]
V.T. Senyut, P.A. Vityaz, S.A. Kovalyova, E.I. Mosunov, I.V. Valkovich, T.V. Gamzeleva, Synthesis of polycrystalline cubic boron nitride from hexagonal boron nitride after mechanical activation and modification with aluminum, Inorg. Mater. Appl. Res. 7 (2016).
DOI: 10.1134/s2075113316010238
Google Scholar
[3]
W.F. Ding, J.H. Xu, Z.Z. Chen, H.H. Su, Y.C. Fu, Grain wear of brazed polycrystalline CBN abrasive tools during constant-force grinding Ti-6Al-4V alloy, Int. J. Adv. Manuf. Tech. 52 (2011) 969-976.
DOI: 10.1007/s00170-010-2777-1
Google Scholar
[4]
F. Shao, Y.T. Wang, Y.Q. Xiao, L.H. Xiao, K.S. Zhang, Q. Cai, Wear of PCBN tool when cutting materials difficult-to-cut based on thermodynamics solubility, Key. Eng. Mater. 693 (2016) 1207-1215.
DOI: 10.4028/www.scientific.net/kem.693.1207
Google Scholar
[5]
Y. Mabuchi, F. Itoigawa, T. Nakamura, K. Kawata, T. Suganuma, High precision turning of hardened steel by use of PcBN insert sharpened with short pulse laser, Key. Eng. Mater. 656-657 (2015) 277-282.
DOI: 10.4028/www.scientific.net/kem.656-657.277
Google Scholar
[6]
K. Sobiyi, I. Sigalas, High-speed machining of martensitic stainless steel using PcBN, J. Superhard. Mater. 38 (2016) 34-39.
DOI: 10.3103/s1063457616010056
Google Scholar
[7]
Y. Zhu, W. Ding, X. Huang, H. Su, G. Huang, Understanding the residual stress distribution in brazed polycrystalline CBN abrasive grains, Int. J. Adv. Manuf. Tech. 88 (2017) 97-106.
DOI: 10.1007/s00170-016-8769-z
Google Scholar
[8]
W. Ji, X.L. Liu, F.G. Yan, S.L. Xiao, M.C. Fan, Investigations of surface roughness with cutting speed and cooling in the wear process during turing GH4133 with PCBN tool, Key. Eng. Mater. 589-590 (2013) 258-263.
DOI: 10.4028/www.scientific.net/kem.589-590.258
Google Scholar
[9]
S.A. Klimenko, S.A. Klimenko, A.S. Manokhin, V.M. Beresnev, Special features of the applications of cutting tools from polycrystalline cubic boron nitride with protective coatings, J. Superhard. Mater. 39 (2017) 288-297.
DOI: 10.3103/s1063457617040098
Google Scholar
[10]
X. Huang, W. Ding, Y. Zhu, C. Yang, Crack propagation simulation of polycrystalline cubic boron nitride abrasive materials based on cohesive element method, Comp. Mater. Sci. 138 (2017) 302-314.
DOI: 10.1016/j.commatsci.2017.07.007
Google Scholar
[11]
K.E. Lindgren, A. Kauppi, L.K.L. Falk, Development of matrix microstructure in polycrystalline cubic boron nitride ceramics, J. Eur. Ceram. Soc. 37 (2017) 3017-3026.
DOI: 10.1016/j.jeurceramsoc.2017.03.010
Google Scholar
[12]
Y. Ichida, H. Ohfuji, T. Irifune, T. Kunimoto, Y. Kojima, T. Shinmei, Synthesis of coarse-grain-dispersed nano-polycrystalline cubic boron nitride by direct transformation under ultrahigh pressure, Diam. Relat. Mater. 77 (2017) 25-34.
DOI: 10.1016/j.diamond.2017.04.020
Google Scholar
[13]
Y. Ma, J. Li, H.L. Wang, R. Zhang, High pressure and high temperature sintered PcBN using Al, B4C and C as sintering additive, Key. Eng. Mater. 697 (2016) 521-525.
DOI: 10.4028/www.scientific.net/kem.697.521
Google Scholar
[14]
L. Feng, S.H. Lee, H.L. Wang, H.S. Lee, Nanostructured HfC-SiC composites prepared by high-energy ball-milling and reactive spark plasma sintering, J. Eur. Ceram. Soc. 36 (2016) 235-238.
DOI: 10.1016/j.jeurceramsoc.2015.09.024
Google Scholar