[1]
W. Krenkel, F. Berndt, C/C-SiC composites for space applications and advanced friction systems, Mater. Sci. Eng. A. 412 (2005) 177-181.
DOI: 10.1016/j.msea.2005.08.204
Google Scholar
[2]
E.J. Opila, D.S. Fox, N.S. Jacobson, Mass spectrometric identification of Si-O-H(g) species from the reaction of silica with water vapor at atmospheric pressure, J. Am. Ceram. Soc. 80 (1997) 1009-1012.
DOI: 10.1111/j.1151-2916.1997.tb02935.x
Google Scholar
[3]
D.L. Poerschke, R.W. Jackson, C.G. Levi, Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions, Annu. Rev. Mater. Res. 47 (2017) 297-330.
DOI: 10.1146/annurev-matsci-010917-105000
Google Scholar
[4]
K.N. Lee, D.S. Fox, N.P. Bansal, Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics, J. Eur. Ceram. Soc. 25 (2005) 1705-1715.
DOI: 10.1016/j.jeurceramsoc.2004.12.013
Google Scholar
[5]
M.H. Lu, H.M. Xiang, Z.H. Feng, X.Y. Wang, Y.C. Zhou, Mechanical and thermal properties of Yb2SiO5: a promising material for T/EBCs applications, J. Am. Ceram. Soc. 99 (2016) 1404-1411.
DOI: 10.1111/jace.14085
Google Scholar
[6]
Z.L. Tian, L.Y. Zheng, J.M. Wang, J.B. Yang, Damage tolerance and extensive plastic deformation of β-Yb2Si2O7 from room to high temperatures, J. Am. Ceram. Soc. 98 (2015) 2843-2851.
DOI: 10.1111/jace.13702
Google Scholar
[7]
Y. Wang, B. L. Zou, X.Z. Fan, X.Q. Cao, Effect of Yb2SiO5 Ceramic Layer Thickness on the Thermal Cycling Life of Yb2SiO5/LaMgAl11O19 Coating Deposited on C/SiC Composites, Key Eng. Mater. 537 (2013) 36-41.
Google Scholar
[8]
É. Darthout, F. Gitzhofer, Thermal cycling and high-temperature corrosion tests of rare earth silicate environmental barrier coatings, J. Therm. Spray Technol. 26 (2017) 1823-1837.
DOI: 10.1007/s11666-017-0635-5
Google Scholar
[9]
D.L. Poerschke, D.D. Hass, S. Eustis, G.G.E. Seward, J.S.V. Sluytman, C.G. Levi, Stability and CMAS Resistance of Ytterbium-Silicate/Hafnate EBCs/TBC for SiC Composites, J. Am. Ceram. Soc., 98 (2015) 278-286.
DOI: 10.1111/jace.13262
Google Scholar
[10]
B.T. Richards, S. Sehr, F.de Franqueville, M.R. Begley, H.N.G. Wadley, Fracture mechanisms of ytterbium monosilicate environmental barrier coatings during cyclic thermal exposure, Acta Mater. 103 (2016) 448-460.
DOI: 10.1016/j.actamat.2015.10.019
Google Scholar
[11]
X. Zhong, Y.R. Niu, H. Li, Y. Zeng, X.B. Zheng, C.X. Ding, J.L. Sun, Microstructure evolution and thermomechanical properties of plasma-sprayed Yb2SiO5 coating during thermal aging, J. Am. Ceram. Soc. 100 (2017) 1896-(1906).
DOI: 10.1111/jace.14690
Google Scholar
[12]
X. Zhong, Y.R. Niu, L.P. Huang, H. Li, X.B. Zheng, C.X. Ding, J.L. Sun, Microstructure and thermal properties of atmospheric plasma sprayed Yb2Si2O7 coating, J. Therm. Spray Technol. 26 (2017) 203-210.
DOI: 10.1007/s11666-016-0482-9
Google Scholar
[13]
K.N. Lee, J.I. Eldridge, R.C. Robinson, Residual stresses and their effects on the durability of environmental barrier coatings for SiC ceramics, J. Am. Ceram. Soc. 88 (2005) 3483-3488.
DOI: 10.1111/j.1551-2916.2005.00640.x
Google Scholar
[14]
A.J. Fernández-Carrión, M. Allix, A.I. Becerro, Thermal expansion of rare-earth pyrosilicates, J. Am. Ceram. Soc. 96 (2013) 2298-2305.
DOI: 10.1111/jace.12388
Google Scholar
[15]
C.Y. Fan, B.L. Zou,L. Zhu W.J. Fan, X.L. Cai,Y. Wang, X.Q. Cao, Oxidation and thermal shock resistant properties of Si/Yb2SiO5/NdMgAl11O19 coating deposited on Cf/SiC composites, Mater. Des. 116 (2017) 261-267.
DOI: 10.1016/j.matdes.2016.12.022
Google Scholar