The Impedance Spectroscopy Study of the Oxides Layer in Thermal Barrier Coatings

Article Preview

Abstract:

Air-plasma-sprayed (APS) thermal barrier coatings (TBCs) were oxidized in air at different temperatures for 1000h and sequentially investigated by impedance spectroscopy (IS) and scanning electron microscopy (SEM). After oxidation at temperatures higher than 900°C, a thermally grown oxide (TGO) layer was formed at the bond coat/topcoat interface in TBCs. The impedance spectra of oxidized TBCs typically contains two relaxation processes that stem from the yttria-stabilized zirconia (YSZ) topcoat of TBCs and the TGO layer. The TGO resistivity that obtained by simulating the impedance spectra increased with the increasing of annealing temperature, demonstrating the growth and the densification of TGO layer.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

510-515

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. R. Clarke, S. R. Phillpot. Thermal barrier coatings, Materials Today. 8 (2005) 22-29.

Google Scholar

[2] M.Zhao, W. Pan, C.L. Wan, et al. Defect engineering in development of low thermal conductivity materials: A review, J. Eur. Ceram. Soc. 37(2016) 1-13.

Google Scholar

[3] M. Zhao, L. X. Zhang, W. Pan. Properties of yttria-stabilized-zirconia based ceramic composite abradable coatings, Key Eng. Mater. 512-515(2012) 1551-1554.

DOI: 10.4028/www.scientific.net/kem.512-515.1551

Google Scholar

[4] A. Rabiei, A. G. Evans. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings, Acta Mater. 48 (2000) 3963-3976.

DOI: 10.1016/s1359-6454(00)00171-3

Google Scholar

[5] H. Dong, G. Yang, C. Li, et al. Effect of TGO thickness on thermal cyclic lifetime and failure mode of plasma-sprayed TBCs, J. Am. Ceram. Soc. 97(2014) 1226-1232.

DOI: 10.1111/jace.12868

Google Scholar

[6] C. H. Zhao, M. Zhao, M. Shahid, et al. Restrained TGO growth in YSZ/NiCrAlY thermal barrier coatings by modified laser remelting, Surf. Coat. Tech. 309 (2017) 1119-1125.

DOI: 10.1016/j.surfcoat.2016.05.015

Google Scholar

[7] I. I.AlbertManero, A. Selimov, Q. Fouliard, et al. Piezospectroscopic evaluation and damage identification for thermal barrier coatings subjected to simulated engine environments, Surf. Coat. Tech. 323 (2017) 30-38.

DOI: 10.1016/j.surfcoat.2016.09.057

Google Scholar

[8] R. J. Christensen, D. M. Lipkin, D. R. Clarke, et al. Nondestructive evaluation of the oxidation stresses through thermal barrier coatings using Cr3+piezospectroscopy, Appl. Phys. Lett. 69 (1996) 3754-3756.

DOI: 10.1063/1.117182

Google Scholar

[9] L. Yang, Y. C. Zhou, W. G. Mao, et al. Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings, Appl. Phys. Lett. 93 (2008) 299.

DOI: 10.1063/1.3043458

Google Scholar

[10] H. Huang, C. Liu, L. Ni, et al. Evaluation of TGO growth in thermal barrier coatings using impedance spectroscopy, Rare Metals. 30 (2011) 643-646.

DOI: 10.1007/s12598-011-0363-z

Google Scholar

[11] M. S. Ali, S. Song, P. Xiao. Evaluation of degradation of thermal barrier coatings using impedance spectroscopy,J. Eur. Ceram. Soc.22 (2002) 101-107.

DOI: 10.1016/s0955-2219(01)00234-5

Google Scholar

[12] W. R. Chen, X. Wu, D. Dudzinski. Influence of thermal cycle frequency on the TGO growth and cracking behaviors of an APS-TBC, J. Therm. Spray Technol. 21 (2012) 1294-1299.

DOI: 10.1007/s11666-012-9824-4

Google Scholar

[13] C. Wagner, Theoretical analysis of the diffusion processes determining the oxidation rate of alloys, J. Electrochem. Soc. 99 (1952) 369-380.

DOI: 10.1149/1.2779605

Google Scholar

[14] J. G. Fletcher, A. R. West, J. T. S. Irvine. The AC impedance response of the physical interface between yttria-stabilized zirconia and YBa2Cu3O7−x, J. Electrochem. Soc. 142 (1995) 2650-2654.

DOI: 10.1149/1.2050068

Google Scholar

[15] N. Birks, G. H. Meier, F. S. Pettit. Introduction to the high-temperature oxidation of metals, Cambridge Univ Pr. (2006).

Google Scholar