[1]
D. R. Clarke, S. R. Phillpot. Thermal barrier coatings, Materials Today. 8 (2005) 22-29.
Google Scholar
[2]
M.Zhao, W. Pan, C.L. Wan, et al. Defect engineering in development of low thermal conductivity materials: A review, J. Eur. Ceram. Soc. 37(2016) 1-13.
Google Scholar
[3]
M. Zhao, L. X. Zhang, W. Pan. Properties of yttria-stabilized-zirconia based ceramic composite abradable coatings, Key Eng. Mater. 512-515(2012) 1551-1554.
DOI: 10.4028/www.scientific.net/kem.512-515.1551
Google Scholar
[4]
A. Rabiei, A. G. Evans. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings, Acta Mater. 48 (2000) 3963-3976.
DOI: 10.1016/s1359-6454(00)00171-3
Google Scholar
[5]
H. Dong, G. Yang, C. Li, et al. Effect of TGO thickness on thermal cyclic lifetime and failure mode of plasma-sprayed TBCs, J. Am. Ceram. Soc. 97(2014) 1226-1232.
DOI: 10.1111/jace.12868
Google Scholar
[6]
C. H. Zhao, M. Zhao, M. Shahid, et al. Restrained TGO growth in YSZ/NiCrAlY thermal barrier coatings by modified laser remelting, Surf. Coat. Tech. 309 (2017) 1119-1125.
DOI: 10.1016/j.surfcoat.2016.05.015
Google Scholar
[7]
I. I.AlbertManero, A. Selimov, Q. Fouliard, et al. Piezospectroscopic evaluation and damage identification for thermal barrier coatings subjected to simulated engine environments, Surf. Coat. Tech. 323 (2017) 30-38.
DOI: 10.1016/j.surfcoat.2016.09.057
Google Scholar
[8]
R. J. Christensen, D. M. Lipkin, D. R. Clarke, et al. Nondestructive evaluation of the oxidation stresses through thermal barrier coatings using Cr3+piezospectroscopy, Appl. Phys. Lett. 69 (1996) 3754-3756.
DOI: 10.1063/1.117182
Google Scholar
[9]
L. Yang, Y. C. Zhou, W. G. Mao, et al. Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings, Appl. Phys. Lett. 93 (2008) 299.
DOI: 10.1063/1.3043458
Google Scholar
[10]
H. Huang, C. Liu, L. Ni, et al. Evaluation of TGO growth in thermal barrier coatings using impedance spectroscopy, Rare Metals. 30 (2011) 643-646.
DOI: 10.1007/s12598-011-0363-z
Google Scholar
[11]
M. S. Ali, S. Song, P. Xiao. Evaluation of degradation of thermal barrier coatings using impedance spectroscopy,J. Eur. Ceram. Soc.22 (2002) 101-107.
DOI: 10.1016/s0955-2219(01)00234-5
Google Scholar
[12]
W. R. Chen, X. Wu, D. Dudzinski. Influence of thermal cycle frequency on the TGO growth and cracking behaviors of an APS-TBC, J. Therm. Spray Technol. 21 (2012) 1294-1299.
DOI: 10.1007/s11666-012-9824-4
Google Scholar
[13]
C. Wagner, Theoretical analysis of the diffusion processes determining the oxidation rate of alloys, J. Electrochem. Soc. 99 (1952) 369-380.
DOI: 10.1149/1.2779605
Google Scholar
[14]
J. G. Fletcher, A. R. West, J. T. S. Irvine. The AC impedance response of the physical interface between yttria-stabilized zirconia and YBa2Cu3O7−x, J. Electrochem. Soc. 142 (1995) 2650-2654.
DOI: 10.1149/1.2050068
Google Scholar
[15]
N. Birks, G. H. Meier, F. S. Pettit. Introduction to the high-temperature oxidation of metals, Cambridge Univ Pr. (2006).
Google Scholar