Fabrication and Growth Mechanism of Nanoleaf Sodium Titanate Coating on High-Purity Titanium Surface

Article Preview

Abstract:

Highly-ordered nanoleaf sodium titanate were successfully synthesized on high-purity titanium surface by catalyst oxidation method. Sodium metaborate powder was coated on titanium substrates, heated in an electric furnace at 650°C for 5 hours and then subjected to a water bath rinse. The structure and morphology of oxide coatings were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the fabricated coatings were composed of rutile and sodium titanium, providing the excellent biocompatibility and nanoscale even gap structure between bamboo-shaped sodium titanate. The mechanism about the growth of highly-ordered nanoleaf sodium titanate also discussed in the current work.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

570-576

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Wang, X.Z. Wang, X.S. Jiang, CdS/ZnS co-sensitized hierarchical TiO2 nanotree array with rutile/anatase junctions for enhanced photoelectrochemical performance, Journal of The Electrochemical Society. 163 (2016) 1041-1046.

DOI: 10.1149/2.0041613jes

Google Scholar

[2] Y.P. Wang, F. Li, H. Wang, Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys, Applied Surface Science. 412 (2017) 29-36.

DOI: 10.1016/j.apsusc.2017.03.191

Google Scholar

[3] L.Le Guéhennec, A. Soueidan, P. Layrolle, Review Surface treatments of titanium dental implants for rapid osseointegration, Dental Materials. 23 (2007) 844-854.

DOI: 10.1016/j.dental.2006.06.025

Google Scholar

[4] Q.L. Huang, X.J. Liu, T.A. Elkhooly, Preparation and characterization of TiO2 /silicate hierarchical coating on titanium surface for biomedical applications, Materials Science and Engineering C. 60 (2016) 308-316.

DOI: 10.1016/j.msec.2015.11.056

Google Scholar

[5] H. Jeon, C.G. Simon, G. Kim, A mini-review: cell response to microscale, nanoscale, and hierarchical patterning of surface structure, Journal of Biomedical Materials Research Part B Applied Biomaterials. 102 (2014) 1580-1594.

DOI: 10.1002/jbm.b.33158

Google Scholar

[6] M. Nikkhah, F. Edalat, S. Manoucheri, A. Khademhosseini, Engineering microscale topographies to control the cell-substrate interface, Biomaterials. 33 (2012) 5230-5246.

DOI: 10.1016/j.biomaterials.2012.03.079

Google Scholar

[7] V.B. Damodaran, D. Bhatnagar, V. Leszczak, Titania nanostructures: a biomedical perspective, Rsc Advances. 5 (2015) 37149-37171.

DOI: 10.1039/c5ra04271b

Google Scholar

[8] J.J. Tao, M. Hong, M. Zhang, Effects of growth substrate on the morphologies of TiO2 hierarchical nanoarrays and their optical and photocatalytic properties, Journal of Materials Science Materials in Electronics. 27 (2016) 2103-2107.

DOI: 10.1007/s10854-015-3997-9

Google Scholar

[9] J.G. Yu, J.J. Fan, K. Lv, Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells, Nanoscale. 2 (2010) 2144 -2149.

DOI: 10.1039/c0nr00427h

Google Scholar

[10] M. Xu, P.M. Da, H.Y. Wu, Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion, Nano Letters. 12 (2013) 1503-1508.

DOI: 10.1021/nl2042968

Google Scholar

[11] F. Shao, J. Sun, L. Gao, Template-free synthesis of hierarchical TiO2 structures and their application in dye-sensitized solar cells, Acs Applied Materials & Interfaces. 3 (2011) 2148-2153.

DOI: 10.1021/am200377g

Google Scholar

[12] Z.L. Zhang, J.F. Li, X.L. Wang, Enhancement of perovskite solar cells efficiency using N-doped TiO2 nanorod arrays as electron transfer layer, Nanoscale Research Letters. 12 (2017) 43-50.

DOI: 10.1186/s11671-016-1811-0

Google Scholar

[13] F. Xiao, A.Z. Ni, X.Z. Liu, Nano-TiO2 films growth and control on the surface of Ti substrates, Journal of Zhejiang University of Technology. 43 (3) (2015) 307-310.

Google Scholar

[14] D. Tang, K. Cheng, W.J. Weng, TiO2 nanorod films grown on Si wafers by a nanodot-assisted hydrothermal growth, Thin Solid Films. 519 (2011) 7644-7649.

DOI: 10.1016/j.tsf.2011.05.011

Google Scholar

[15] Y.X. Liu, Tsuru K, Hayakawa S, Topotaxial nucleation and growth of TiO2 submicron-scale rod arrays on titanium substrates via sodium tetraborate glass coating, Journal of the Ceramic Society of Japan. 112 (10) (2004) 567-571.

DOI: 10.2109/jcersj.112.567

Google Scholar

[16] Y.X. Liu, Tsuru K, Hayakawa S, Potassium titanate nanorod arrays grown on titanium substrates and their in vitro bioactivity, Journal of the Ceramic Society of Japan. 112 (12) (2004) 634-640.

DOI: 10.2109/jcersj.112.634

Google Scholar

[17] G.L. Le, Soueidan A, Layrolle P, et al. Surface treatments of titanium dental implants for rapid osseointegration, Dental Materials,2007, 23(7): 844-854.

DOI: 10.1016/j.dental.2006.06.025

Google Scholar

[18] Albrektsson T, Wennerberg A. The impact of oral implants-past and future, J Can Dent Assoc, 2005,71(327): 1966-(2042).

Google Scholar

[19] S.F. Lei, J.B. Wen, H. Yao, et al. Effects of Ce on microstructure and properties of Mg-2Zn-0.4Zr-xCe biomedical magnesium alloys, Transations of Materials and Heat Treatment,2016,(10):96-101.

Google Scholar

[20] B.G. Hyde, Andersson S. Inorganic crystal structures, John Wiley&Sons, 1989:133-135.

Google Scholar