[1]
Z. Wang, X.Z. Wang, X.S. Jiang, CdS/ZnS co-sensitized hierarchical TiO2 nanotree array with rutile/anatase junctions for enhanced photoelectrochemical performance, Journal of The Electrochemical Society. 163 (2016) 1041-1046.
DOI: 10.1149/2.0041613jes
Google Scholar
[2]
Y.P. Wang, F. Li, H. Wang, Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys, Applied Surface Science. 412 (2017) 29-36.
DOI: 10.1016/j.apsusc.2017.03.191
Google Scholar
[3]
L.Le Guéhennec, A. Soueidan, P. Layrolle, Review Surface treatments of titanium dental implants for rapid osseointegration, Dental Materials. 23 (2007) 844-854.
DOI: 10.1016/j.dental.2006.06.025
Google Scholar
[4]
Q.L. Huang, X.J. Liu, T.A. Elkhooly, Preparation and characterization of TiO2 /silicate hierarchical coating on titanium surface for biomedical applications, Materials Science and Engineering C. 60 (2016) 308-316.
DOI: 10.1016/j.msec.2015.11.056
Google Scholar
[5]
H. Jeon, C.G. Simon, G. Kim, A mini-review: cell response to microscale, nanoscale, and hierarchical patterning of surface structure, Journal of Biomedical Materials Research Part B Applied Biomaterials. 102 (2014) 1580-1594.
DOI: 10.1002/jbm.b.33158
Google Scholar
[6]
M. Nikkhah, F. Edalat, S. Manoucheri, A. Khademhosseini, Engineering microscale topographies to control the cell-substrate interface, Biomaterials. 33 (2012) 5230-5246.
DOI: 10.1016/j.biomaterials.2012.03.079
Google Scholar
[7]
V.B. Damodaran, D. Bhatnagar, V. Leszczak, Titania nanostructures: a biomedical perspective, Rsc Advances. 5 (2015) 37149-37171.
DOI: 10.1039/c5ra04271b
Google Scholar
[8]
J.J. Tao, M. Hong, M. Zhang, Effects of growth substrate on the morphologies of TiO2 hierarchical nanoarrays and their optical and photocatalytic properties, Journal of Materials Science Materials in Electronics. 27 (2016) 2103-2107.
DOI: 10.1007/s10854-015-3997-9
Google Scholar
[9]
J.G. Yu, J.J. Fan, K. Lv, Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells, Nanoscale. 2 (2010) 2144 -2149.
DOI: 10.1039/c0nr00427h
Google Scholar
[10]
M. Xu, P.M. Da, H.Y. Wu, Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion, Nano Letters. 12 (2013) 1503-1508.
DOI: 10.1021/nl2042968
Google Scholar
[11]
F. Shao, J. Sun, L. Gao, Template-free synthesis of hierarchical TiO2 structures and their application in dye-sensitized solar cells, Acs Applied Materials & Interfaces. 3 (2011) 2148-2153.
DOI: 10.1021/am200377g
Google Scholar
[12]
Z.L. Zhang, J.F. Li, X.L. Wang, Enhancement of perovskite solar cells efficiency using N-doped TiO2 nanorod arrays as electron transfer layer, Nanoscale Research Letters. 12 (2017) 43-50.
DOI: 10.1186/s11671-016-1811-0
Google Scholar
[13]
F. Xiao, A.Z. Ni, X.Z. Liu, Nano-TiO2 films growth and control on the surface of Ti substrates, Journal of Zhejiang University of Technology. 43 (3) (2015) 307-310.
Google Scholar
[14]
D. Tang, K. Cheng, W.J. Weng, TiO2 nanorod films grown on Si wafers by a nanodot-assisted hydrothermal growth, Thin Solid Films. 519 (2011) 7644-7649.
DOI: 10.1016/j.tsf.2011.05.011
Google Scholar
[15]
Y.X. Liu, Tsuru K, Hayakawa S, Topotaxial nucleation and growth of TiO2 submicron-scale rod arrays on titanium substrates via sodium tetraborate glass coating, Journal of the Ceramic Society of Japan. 112 (10) (2004) 567-571.
DOI: 10.2109/jcersj.112.567
Google Scholar
[16]
Y.X. Liu, Tsuru K, Hayakawa S, Potassium titanate nanorod arrays grown on titanium substrates and their in vitro bioactivity, Journal of the Ceramic Society of Japan. 112 (12) (2004) 634-640.
DOI: 10.2109/jcersj.112.634
Google Scholar
[17]
G.L. Le, Soueidan A, Layrolle P, et al. Surface treatments of titanium dental implants for rapid osseointegration, Dental Materials,2007, 23(7): 844-854.
DOI: 10.1016/j.dental.2006.06.025
Google Scholar
[18]
Albrektsson T, Wennerberg A. The impact of oral implants-past and future, J Can Dent Assoc, 2005,71(327): 1966-(2042).
Google Scholar
[19]
S.F. Lei, J.B. Wen, H. Yao, et al. Effects of Ce on microstructure and properties of Mg-2Zn-0.4Zr-xCe biomedical magnesium alloys, Transations of Materials and Heat Treatment,2016,(10):96-101.
Google Scholar
[20]
B.G. Hyde, Andersson S. Inorganic crystal structures, John Wiley&Sons, 1989:133-135.
Google Scholar