[1]
J.D. Guo, J.X. Bi, Q.J. Mei, H.T. Wu, Characterization and microwave dielectric properties of wolframite-type MgZrNb2O8 ceramics, Journal of Alloys and Compounds 655 (2016) 60-65.
DOI: 10.1016/j.jallcom.2015.09.143
Google Scholar
[2]
X.S. Lyu, L.X. Li, S. Zhang, et al., A new low-loss dielectric material ZnZrTa2O8 for microwave devices, Journal of the European Ceramic Society 36(3) (2016) 931-935.
DOI: 10.1016/j.jeurceramsoc.2015.11.015
Google Scholar
[3]
H. Wu, E.S. Kim, Characterization of crystal structure and microwave dielectric properties of AZrNb2O8 (A=Zn, Co, Mg, Mn) ceramics based on complex bond theory, Ceramics International 42(5) (2016) 5785-5791.
DOI: 10.1016/j.ceramint.2015.12.119
Google Scholar
[4]
X.S. Jiang, H.L. Pan, Z.B. Feng, H.T. Wu, Characterization of microwave dielectric materials NiZrNb2O8 based on the chemical bond theory. Journal of Materials Science: Materials in Electronics 27(10) (2016) 10963-10969.
DOI: 10.1007/s10854-016-5211-0
Google Scholar
[5]
W.S. Xia, F.Y. Yang, G.Y. Zhang, K. Han, D.C. Guo, New low-dielectric-loss NiZrNb2O8ceramics for microwave application. Journal of Alloys and Compounds 656 (2016) 470-475.
DOI: 10.1016/j.jallcom.2015.10.008
Google Scholar
[6]
Y. Zhang, S.Y. Liu, Y.C. Zhang, M.Q. Xiang,Low-Temperature Synthesis of CoNb2O6 Microwave Dielectric Ceramics. Journal of the American Ceramic Society 99(9) (2016) 2871-2874.
DOI: 10.1111/jace.14392
Google Scholar
[7]
B.W. Hakki, P.D. Coleman, A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range, IEEE Transactions on Microwave Theroy and Techniques 8 (1960) 402-410.
DOI: 10.1109/tmtt.1960.1124749
Google Scholar
[8]
W.E. Courtney, Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators, IEEE Trans. Microwave Theroy and Techniques 18 (1970) 476-485.
DOI: 10.1109/tmtt.1970.1127271
Google Scholar
[9]
Y. Kobayashiy, M. Katoh, Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method, IEEE Transactions on Microwave Theroy and Techniques 33 (1985) 586-592.
DOI: 10.1109/tmtt.1985.1133033
Google Scholar
[10]
M.Q. Xiang, Y.C. Zhang, Y. Zhang, C.F. Wang, Y.H. Yu, Three alternative raw materials for improving the performances of Li4SiO4 pebbles. Fusion Engineering and Design. 102 (2016) 1-7.
DOI: 10.1016/j.fusengdes.2015.11.015
Google Scholar
[11]
Y. Zhang, Y.C. Zhang, X.L. Su, M.Q. Xiang, Preparation and Characterization of Bi2Ti2O7 Microwave Dielectric Ceramics by Citrate Sol-Gel Method, Key Eng. Mater. 697 (2016) 219-222.
DOI: 10.4028/www.scientific.net/kem.697.219
Google Scholar
[12]
W.S. Kim, T.H. Kim, E.S. Kim, K. H. Yoon, Microwave dielectric properties and far infrared reflectivity spectra of the (Zr0.8Sn0.2)TiO4 ceramics with additives, Jpn J. Appl. Phys. 37 (1998) 5367-5371.
DOI: 10.1143/jjap.37.5367
Google Scholar
[13]
D.A. Sagala, S. Nambu, Microscopic Calculation of Dielectric Loss at Microwave Frequencies for Complex Perovskite Ba(Zn1/3Ta2/3) O3, J. Am. Ceram. Soc. 75 (9) (1992) 2573-2575.
DOI: 10.1111/j.1151-2916.1992.tb05613.x
Google Scholar
[14]
Y.C. Liou, Y.T. Chen, W.C. Tsai, Synthesis of temperature-stable microwave dielectric ceramics NiNb2O6 with TiO2 addition. Journal of Alloys and Compounds 477(1-2) (2009) 537-542.
DOI: 10.1016/j.jallcom.2008.10.073
Google Scholar