Preparation and Characterization of PrAlO3-Doped 0.95MgTiO3-0.05CaTiO3 Microwave Dielectric Ceramics

Article Preview

Abstract:

Microwave dielectric ceramics with a nominal composition of 0.95MgTiO3-0.05CaTiO3- xPrAlO3 (x=0-0.015) were prepared by conventional solid-state sintering. The phase composition, microstructure and dielectric properties were characterized by X-ray diffractometer, scanning electron microscope and vector network analyzer, respectively. A two-phase system with major MgTiO3 phase and minor CaTiO3 phase was detected. With increasing content of PrAlO3, the grain size of the obtained ceramics decreased; the dielectric constant and quality factor increased first and then decreased. The temperature coefficient of resonant frequency decreased after PrAlO3 was doped, but with more PrAlO3 doped it will increase. The obtained 0.95MgTiO3-0.05CaTiO3 ceramic doped by PrAlO3 with x=0.0075 presented the best performance with εr=19.04, Q·f=42400 GHz and τf=-19.40 ppm/°C.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

579-584

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties, Int. Mater. Rev. 60 (2015) 392-412.

DOI: 10.1179/1743280415y.0000000007

Google Scholar

[2] C.H. Hsu, C.J. Huang, Preparation, structural and microwave dielectric properties of CaLa4(ZrxTi1-x)4O15 ceramics, J.Alloy. Compd. 587 (2014) 45-49.

DOI: 10.1016/j.jallcom.2013.10.168

Google Scholar

[3] H. Ohsato, T. Tsunooka, A. Kan, et al., Microwave-millimeter wave dielectric materials, Key Eng. Mater. 269 (2004) 195-198.

DOI: 10.4028/www.scientific.net/kem.269.195

Google Scholar

[4] L.X. Li, S. Li, T. Tian, Microwave dielectric properties of (1-x)MgTiO3-x(Ca0.6Na0.2Sm0.2)TiO3 ceramic system, J. Mater. Sci-Mater. Electron. 27 (2016) 1286-1292.

DOI: 10.1007/s10854-015-3887-1

Google Scholar

[5] R.C. Pullar, J.D. Breeze, N.M. Alford, Microwave dielectric properties of columbite-structure niobate ceramics, M2+Nb2O6, Key Eng. Mater. 224-2 (2002) 1-4.

DOI: 10.4028/www.scientific.net/kem.224-226.1

Google Scholar

[6] K. Wakino, Recent development of dielectric resonator materials and filters in Japan,Ferroelectrics 91 (1989) 69-86.

DOI: 10.1080/00150198908015730

Google Scholar

[7] Y. Yang, R.L. Fu, S. Agathopoulos, Influence of the processing way for La3+-doping on crystal structure, microstructure, and microwave dielectric properties of Ca0.7Ti0.7La0.3Al0.3O3 ceramics,Ceram. Int. 42 (2016)18108-18115.

DOI: 10.1016/j.ceramint.2016.08.123

Google Scholar

[8] B. Jancar, D. Suvorov, M. Valant, Characterization of CaTiO3-NdAlO3 dielectric ceramics,J. Eur. Ceram. Soc.23 (2003) 1391-1400.

DOI: 10.1016/s0955-2219(02)00359-x

Google Scholar

[9] L.X. Li, Z.D. Gao, Y.R. Liu, et al., Influence of LaAlO3 additive to MgTiO3-CaTiO3 ceramics on sintering behavior and microwave dielectric properties,Mater. Lett. 140 (2015) 5-8.

DOI: 10.1016/j.matlet.2014.10.154

Google Scholar

[10] J. Liu, C.W. Zhong, Y. Tao, et al., Microwave dielectric characteristics of NdAlO3-doped 0.95MgTiO3-0.05CaTiO3 ceramics,J. Mater. Sci-Mate.Electron. 28 (2017) 909-914.

DOI: 10.1007/s10854-016-5606-y

Google Scholar

[11] Y. Kobayashi, M. Katoh, Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method, IEEE T. Microw. Theory 33 (1985) 586-592.

DOI: 10.1109/tmtt.1985.1133033

Google Scholar

[12] I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks, J. Am. Ceram. Soc. 89(2006) 2063-(2072).

DOI: 10.1111/j.1551-2916.2006.01025.x

Google Scholar

[13] R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides, J. Appl.Phys.73 (1993) 348-366.

Google Scholar

[14] J. Petzelt, N.Setter, Far infrared spectroscopy and origin of microwave losses in low-loss ceramics, Ferroelectrics150 (1993) 89-102.

DOI: 10.1080/00150199308008697

Google Scholar

[15] M.K. Park, H.N. Kim, K.S. Lee, et al., Effect of microstructure on dielectric properties of Si3N4 at microwave frequency, Key Eng. Mater. 287 (2005) 247-252.

Google Scholar

[16] F. Liu, X.Y. Liu, C.L. Yuan, Microstructures and microwave dielectric properties of (1-x)Sr0.4Na0.3La0.3TiO3-xLnAlO3 (Ln=Sm, Nd) ceramic systems, J. Eur. Ceram. Soc. 35 (2015) 2091-(2098).

DOI: 10.1016/j.jeurceramsoc.2015.01.007

Google Scholar

[17] I.M. Reaney, E.L. Colla,N.Setter,Dielectric and structural characteristics of Ba-based and Sr-based complex perovskites as a function of tolerance factor,Jpn. J. Appl. Phys. 33 (1994) 3984-3990.

DOI: 10.1143/jjap.33.3984

Google Scholar

[18] F. Liu, X.Y. Liu, C.L. Yuan, Crystal structure and dielectric properties of (1-x)SrTiO3- xCa0.4Sm0.4TiO3 ceramic system at microwave frequencies, Mater. Chem. Phys. 148 (2014) 1083-1088.

Google Scholar