[1]
B. Ren, J. Huang, H.Z. Yu, W.C. Yang, L. Wang, Z.M. Pan, L.J. Wang, Thermal stability of hydrogenated diamond films in nitrogen ambience studied by reflection electron energy spectroscopy and X-ray photoelectron spectroscopy, Appl. Surf. Sci. In press.
DOI: 10.1016/j.apsusc.2015.10.067
Google Scholar
[2]
K. Tang, L. Wang, J. Huang, B. Ren, Q. Zeng, K. Qin, L. Shi, Y. Xia, Freestanding diamond films phototransistor, Surf. Coat. Tech. 228, Supplement 1 (2013) S401-S403.
DOI: 10.1016/j.surfcoat.2012.05.059
Google Scholar
[3]
M.Y. Liao, Y. Koide, Carbon-Based Materials: Growth, Properties, MEMS/NEMS Technologies, and MEM/NEM Switches, Crit. Rev. Solid State 36 (2011) 66-101.
DOI: 10.1080/10408436.2011.572748
Google Scholar
[4]
G. Conte, E. Giovine, A. Bolshakov, V. Ralchenko, V. Konov, Surface channel MESFETs on hydrogenated diamond, Nanotechnology 23 (2012) 025201.
DOI: 10.1088/0957-4484/23/2/025201
Google Scholar
[5]
Z.Q. Xie, J. Bai, Y.S. Zhou, Y. Gao, J. Park, T. Guillemet, L. Jiang, X.C. Zeng, Y.F. Lu, Control of crystallographic orientation in diamond synthesis through laser resonant vibrational excitation of precursor molecules, Sci. Rep. 4 (2014) 4581.
DOI: 10.1038/srep04581
Google Scholar
[6]
O.A. Williams, Nanocrystalline diamond, Diam. Relat. Mater. 20 (2011) 621-640.
Google Scholar
[7]
X. Jiang, K. Schiffmann, C.P. Klages, D. Wittorf, C.L. Jia, K. Urban, W. Jäger, Coalescence and overgrowth of diamond grains for improved heteroepitaxy on silicon (001), J. Appl. Phys. 83 (1998) 2511.
DOI: 10.1063/1.367012
Google Scholar
[8]
C.R. Lin, W.H. Liao, D.H. Wei, Y.R. Shen, C.L. Chen, C.L. Dong, W.C. Fang, Fabrication of highly transparent ultrananocrystalline diamond films from focused microwave plasma jets, Surf. Coat. Tech. 231 (2013) 594-598.
DOI: 10.1016/j.surfcoat.2012.01.052
Google Scholar
[9]
X. Li, J. Perkins, R. Collazo, R.J. Nemanich, Z. Sitar, Investigation of the effect of the total pressure and methane concentration on the growth rate and quality of diamond thin films grown by MPCVD, Diam. Relat. Mater. 15 (2006) 1784-1788.
DOI: 10.1016/j.diamond.2006.09.008
Google Scholar
[10]
C.J. Tang, A.J.S. Fernandes, F. Costa, J.L. Pinto, Effect of microwave power and nitrogen addition on the formation of {100} faceted diamond from microcrystalline to nanocrystalline, Vacuum, 85 (2011) 1130-1134.
DOI: 10.1016/j.vacuum.2011.01.024
Google Scholar
[11]
W.J. Zhang, X. Jiang, The growth characteristics of (001) oriented diamond layers on (111) diamond face via bias-assisted chemical vapor deposition, Appl. Phys. Lett. 68 (1996) 2195.
DOI: 10.1063/1.116010
Google Scholar
[12]
X. Jiang, K. Schiffmann, C.P. Klages, Nucleation and initial growth phase of diamond thin films on (100) silicon, Phys. Rev. B 50 (1994) 8402-8410.
DOI: 10.1103/physrevb.50.8402
Google Scholar
[13]
T. Liu, D. Raabe, W.M. Mao, S. Zaefferer, Microtexture and grain boundaries in freestanding CVD diamond films: growth and twinning mechanisms, Adv. Funct. Mater. 19 (2009) 3880-3891.
DOI: 10.1002/adfm.200901231
Google Scholar
[14]
K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D.J. Twitchen, G.A. Scarsbrook, S.E. Coe, Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz, IEEE Electr. Device Lett.27 (2006) 570-572.
DOI: 10.1109/led.2006.876325
Google Scholar
[15]
K. Hirama, H. Takayanagi, S. Yamauchi, J.H. Yang, H. Kawarada, H. Umezawa, Spontaneous polarization model for surface orientation dependence of diamond hole accumulation layer and its transistor performance, Appl. Phys. Lett. 92 (2008) 112107.
DOI: 10.1063/1.2889947
Google Scholar
[16]
K. Kumagai, K. Miyata, K. Nishimura, K. Kobashi, Growth of (110)-oriented diamond films by electron-assisted chemical vapor deposition, J. Mater. Res. 8 (1993) 314-320.
DOI: 10.1557/jmr.1993.0314
Google Scholar
[17]
F.K. Lotgering, Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I, J. Inorg. Nucl. Chem. 9 (1959) 113-123.
DOI: 10.1016/0022-1902(59)80070-1
Google Scholar
[18]
H. Chen, B. Shen, J. Xu, J. Zhai, Textured Ca0.85(Li,Ce)0.15Bi4Ti4O15 ceramics for high temperature piezoelectric applications, Mater. Res. Bull. 47 (2012) 2530-2534.
DOI: 10.1016/j.materresbull.2012.05.009
Google Scholar
[19]
H. Maeda, M. Irie, T. Hino, K. Kusakabe, S. Morooka, Formation of highly oriented diamond film on carburized (100) Si substrate, J. Mater. Res. 10 (1995) 158-164.
DOI: 10.1557/jmr.1995.0158
Google Scholar
[20]
H. Jeon, C. Wang, A. Hatta, T. Ito, Nucleation-enhancing treatment for diamond growth over a large-area using magnetoactive microwave plasma chemical vapor deposition, J. Appl. Phys. 88 (2000) 2979-2983.
DOI: 10.1063/1.1287411
Google Scholar
[21]
D. Das, R.N. Singh, A review of nucleation, growth and low temperature synthesis of diamond thin films, Int. Mater. Rev. 52 (2007) 29-64.
Google Scholar
[22]
M. Regmi, K. More, G. Eres, A narrow biasing window for high density diamond nucleation on Ir/YSZ/Si(100) using microwave plasma chemical vapor deposition, Diam. Relat. Mater. 23 (2012) 28-33.
DOI: 10.1016/j.diamond.2012.01.008
Google Scholar
[23]
A.C. Ferrari, J. Robertson, Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond, Phys. Rev. B 63 (2001) 121405.
Google Scholar
[24]
X.J. Hu, J.S. Ye, H. Hu, X.H. Chen, Y.G. Shen, Phosphorus ion implantation and annealing induced n-type conductivity and microstructure evolution in ultrananocrystalline diamond films, Appl. Phys. Lett. 99 (2011) 131902.
DOI: 10.1063/1.3641458
Google Scholar