Growth of Highly (110) Oriented Diamond Film by Microwave Plasma Chemical Vapor Deposition

Article Preview

Abstract:

In this study, we propose a simple and effective approach to enhance (110) orientation in diamond films grown on (100) Si substrates by microwave plasma chemical vapor deposition. It is found that the crystalline structure of diamond films strongly rely on the CH4 concentration in the nucleation stage. Under the same growth condition, when the CH4 concentration is less than 7% (7%) in the nucleation stage, the diamond films exhibit randomly oriented structure; once the value exceeds 7%, the deposited films are strongly (110) oriented. It could be verified by experiments that the formation of (110) orientation in diamond films are related to the high nucleation density and high fraction of diamond-like carbon existing in nucleation samples.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

893-899

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Ren, J. Huang, H.Z. Yu, W.C. Yang, L. Wang, Z.M. Pan, L.J. Wang, Thermal stability of hydrogenated diamond films in nitrogen ambience studied by reflection electron energy spectroscopy and X-ray photoelectron spectroscopy, Appl. Surf. Sci. In press.

DOI: 10.1016/j.apsusc.2015.10.067

Google Scholar

[2] K. Tang, L. Wang, J. Huang, B. Ren, Q. Zeng, K. Qin, L. Shi, Y. Xia, Freestanding diamond films phototransistor, Surf. Coat. Tech. 228, Supplement 1 (2013) S401-S403.

DOI: 10.1016/j.surfcoat.2012.05.059

Google Scholar

[3] M.Y. Liao, Y. Koide, Carbon-Based Materials: Growth, Properties, MEMS/NEMS Technologies, and MEM/NEM Switches, Crit. Rev. Solid State 36 (2011) 66-101.

DOI: 10.1080/10408436.2011.572748

Google Scholar

[4] G. Conte, E. Giovine, A. Bolshakov, V. Ralchenko, V. Konov, Surface channel MESFETs on hydrogenated diamond, Nanotechnology 23 (2012) 025201.

DOI: 10.1088/0957-4484/23/2/025201

Google Scholar

[5] Z.Q. Xie, J. Bai, Y.S. Zhou, Y. Gao, J. Park, T. Guillemet, L. Jiang, X.C. Zeng, Y.F. Lu, Control of crystallographic orientation in diamond synthesis through laser resonant vibrational excitation of precursor molecules, Sci. Rep. 4 (2014) 4581.

DOI: 10.1038/srep04581

Google Scholar

[6] O.A. Williams, Nanocrystalline diamond, Diam. Relat. Mater. 20 (2011) 621-640.

Google Scholar

[7] X. Jiang, K. Schiffmann, C.P. Klages, D. Wittorf, C.L. Jia, K. Urban, W. Jäger, Coalescence and overgrowth of diamond grains for improved heteroepitaxy on silicon (001), J. Appl. Phys. 83 (1998) 2511.

DOI: 10.1063/1.367012

Google Scholar

[8] C.R. Lin, W.H. Liao, D.H. Wei, Y.R. Shen, C.L. Chen, C.L. Dong, W.C. Fang, Fabrication of highly transparent ultrananocrystalline diamond films from focused microwave plasma jets, Surf. Coat. Tech. 231 (2013) 594-598.

DOI: 10.1016/j.surfcoat.2012.01.052

Google Scholar

[9] X. Li, J. Perkins, R. Collazo, R.J. Nemanich, Z. Sitar, Investigation of the effect of the total pressure and methane concentration on the growth rate and quality of diamond thin films grown by MPCVD, Diam. Relat. Mater. 15 (2006) 1784-1788.

DOI: 10.1016/j.diamond.2006.09.008

Google Scholar

[10] C.J. Tang, A.J.S. Fernandes, F. Costa, J.L. Pinto, Effect of microwave power and nitrogen addition on the formation of {100} faceted diamond from microcrystalline to nanocrystalline, Vacuum, 85 (2011) 1130-1134.

DOI: 10.1016/j.vacuum.2011.01.024

Google Scholar

[11] W.J. Zhang, X. Jiang, The growth characteristics of (001) oriented diamond layers on (111) diamond face via bias-assisted chemical vapor deposition, Appl. Phys. Lett. 68 (1996) 2195.

DOI: 10.1063/1.116010

Google Scholar

[12] X. Jiang, K. Schiffmann, C.P. Klages, Nucleation and initial growth phase of diamond thin films on (100) silicon, Phys. Rev. B 50 (1994) 8402-8410.

DOI: 10.1103/physrevb.50.8402

Google Scholar

[13] T. Liu, D. Raabe, W.M. Mao, S. Zaefferer, Microtexture and grain boundaries in freestanding CVD diamond films: growth and twinning mechanisms, Adv. Funct. Mater. 19 (2009) 3880-3891.

DOI: 10.1002/adfm.200901231

Google Scholar

[14] K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D.J. Twitchen, G.A. Scarsbrook, S.E. Coe, Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz, IEEE Electr. Device Lett.27 (2006) 570-572.

DOI: 10.1109/led.2006.876325

Google Scholar

[15] K. Hirama, H. Takayanagi, S. Yamauchi, J.H. Yang, H. Kawarada, H. Umezawa, Spontaneous polarization model for surface orientation dependence of diamond hole accumulation layer and its transistor performance, Appl. Phys. Lett. 92 (2008) 112107.

DOI: 10.1063/1.2889947

Google Scholar

[16] K. Kumagai, K. Miyata, K. Nishimura, K. Kobashi, Growth of (110)-oriented diamond films by electron-assisted chemical vapor deposition, J. Mater. Res. 8 (1993) 314-320.

DOI: 10.1557/jmr.1993.0314

Google Scholar

[17] F.K. Lotgering, Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I, J. Inorg. Nucl. Chem. 9 (1959) 113-123.

DOI: 10.1016/0022-1902(59)80070-1

Google Scholar

[18] H. Chen, B. Shen, J. Xu, J. Zhai, Textured Ca0.85(Li,Ce)0.15Bi4Ti4O15 ceramics for high temperature piezoelectric applications, Mater. Res. Bull. 47 (2012) 2530-2534.

DOI: 10.1016/j.materresbull.2012.05.009

Google Scholar

[19] H. Maeda, M. Irie, T. Hino, K. Kusakabe, S. Morooka, Formation of highly oriented diamond film on carburized (100) Si substrate, J. Mater. Res. 10 (1995) 158-164.

DOI: 10.1557/jmr.1995.0158

Google Scholar

[20] H. Jeon, C. Wang, A. Hatta, T. Ito, Nucleation-enhancing treatment for diamond growth over a large-area using magnetoactive microwave plasma chemical vapor deposition, J. Appl. Phys. 88 (2000) 2979-2983.

DOI: 10.1063/1.1287411

Google Scholar

[21] D. Das, R.N. Singh, A review of nucleation, growth and low temperature synthesis of diamond thin films, Int. Mater. Rev. 52 (2007) 29-64.

Google Scholar

[22] M. Regmi, K. More, G. Eres, A narrow biasing window for high density diamond nucleation on Ir/YSZ/Si(100) using microwave plasma chemical vapor deposition, Diam. Relat. Mater. 23 (2012) 28-33.

DOI: 10.1016/j.diamond.2012.01.008

Google Scholar

[23] A.C. Ferrari, J. Robertson, Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond, Phys. Rev. B 63 (2001) 121405.

Google Scholar

[24] X.J. Hu, J.S. Ye, H. Hu, X.H. Chen, Y.G. Shen, Phosphorus ion implantation and annealing induced n-type conductivity and microstructure evolution in ultrananocrystalline diamond films, Appl. Phys. Lett. 99 (2011) 131902.

DOI: 10.1063/1.3641458

Google Scholar