Preparation and Optical Properties of ZnO Nanocrystals by Chemical Bath Deposition

Article Preview

Abstract:

ZnO nanocrystals were prepared using three different salts of ZnSO4, Zn (CH3COO)2 and Zn (NO3)2 by chemical bath deposition. The samples were characterized by XRD, SEM, PL, and FTIR spectroscopy. The XRD results showed that all the samples exhibit the hexagonal wurtzite standard crystal of ZnO. When the zinc precursor is ZnSO4 and Zn (CH3COO)2, B1 and A2 possess the best crystallinity. The FESEM results showed all the samples have flower-like ZnO structures with difference grain size distributions, diameters and tips of the ZnO nanoneedles or nanorods. In the photoluminescence spectrum, we can observe that, all the samples have a very strong at the wavelengths from 475 to 650 nm, corresponding to relatively broad visible emission peak attributed to the oxygen defects. The experimental results of the sample prepared by ZnSO4 exhibit the highest visible luminescent performance. In the infrared absorption spectrum, the band of all the ZnO powders was located at about 500 cm-1, which was the characteristic absorption peak of Zn-O bond. The stretching vibration peak of C=O can be observed at about 1700 cm-1. Meanwhile, there is a strong absorption of the hydroxyl groups in/on Zn (OH)2 at around 3450 cm-1, which were from the water molecules.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

865-871

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.Z. Ye, J.G. Lv, Y.Z. Zhang, Doping technology and application of Zinc Oxide semiconductor materials, Zhejiang University press. (2009).

Google Scholar

[2] H.Cao J.Y. Xu, D.Z. Zhang, S.H. Chang S.T.Ho,E.W. Shi,X. Liuand P.R. Chang, Spatialconfinement of laser light in active random media, Phys.Rev.Lett., 24 (2000)5584-5587.

DOI: 10.1103/physrevlett.84.5584

Google Scholar

[3] H.Cao, J.Y.Xu, P.H. Chang. Microlaser made of disorded media, Appl. Phys. Lett, 21 (2000) 2997-2999.

DOI: 10.1063/1.126557

Google Scholar

[4] D.M. Bagnall, Y.F. Chen,Z.Zhu,T.Yao,S.Koyama M.Y. ShenandT.Goto.Optically pumped lasing of ZnO at room temperate, Appl.Phys.Lett,17 (1997)2230-2232.

DOI: 10.1063/1.118824

Google Scholar

[5] S. C. Cui, D. F. Zhang, X. P. Pu, X.H. Qian, T. T. Ge, D. Yan, Effects of anion on the morphologies of ZnO synthesized by an aqueous solution method, Advanced Materials Research 284-286 (2011) 781-785.

DOI: 10.4028/www.scientific.net/amr.284-286.781

Google Scholar

[6] Z. S. Hu, G. Oskam, R. L. Penn, N. Pesika, and P. C. Searson, The influence of Anion on the Coarsening Kinetics of ZnO Nanoparticles, Phys. Chem. B 107 (2003)3124-3130.

DOI: 10.1021/jp020580h

Google Scholar

[7] X. Xu, H. Pang, Z. Zhou, X. Fan, S. Hu, Y. Wang, Preparation of multi-interfacial ZnO particles and their growth mechanism, Adv. Powder Technol. 22(2011)634-638.

DOI: 10.1016/j.apt.2010.09.017

Google Scholar

[8] U. Pal, P. Santiago, Controlling the morphology of ZnO nanostructures in alow-temperature hydrothermal process, Phys. Chem. B 109 (2005)15317–15321.

DOI: 10.1021/jp052496i

Google Scholar

[9] L. Spanhel, M.A. Anderson, Semiconductor clusters in the sol–gel process:quantized aggregation, gelation, and crystal growth in concentrated ZnOcolloids, Am. Chem. Soc. 113 (1991) 2826–2833.

DOI: 10.1021/ja00008a004

Google Scholar

[10] J.J. Ding, X.B. Yan, Q.J. Xue, Study on field emission and photoluminescenceproperties of ZnO/grapheme hybrids grown on Si substrates, Mater. Chem.Phys. 133 (2012) 405–409.

DOI: 10.1016/j.matchemphys.2012.01.051

Google Scholar

[11] X. Wang, K.F. Huo, F. Zhang, Z. Hu, P.K. Chu, H.S. Tao, Q. Wu, Y.M. Hu, J.M. Zhu,Structural regulation and optical properties of one-dimensional ZnOnanomaterials in situ grown from and on brass substrates, Phys. Chem. C113 (2009) 170–173.

DOI: 10.1021/jp808679q

Google Scholar

[12] Y.K. Park, A. Umar, E.W. Lee, D.M. Hong, Y.B. Hahn, Single ZnO nanobelt basedfield effect transistors (FETs), Nanosci. Nanotechnol. 9 (2009) 5745–5751.

DOI: 10.1166/jnn.2009.1247

Google Scholar

[13] J. Wang, S.C. Hou, L.Z. Zhang, J.C. Chen, L. Xiang, Ultra-rapid formation of ZnOhierarchical structures from dilution-induced supersaturated solutions, CrystEngComm 16 (2014) 7115–7123.

DOI: 10.1039/c4ce00765d

Google Scholar

[14] P.D. Cozzoli, A. Kornowski, H. Weller, Colloidal synthesis of organic-cappedZnO nanocrystals via a sequential reduction–oxidation reaction, Phys.Chem. B 109 (2005) 2638–2644.

DOI: 10.1021/jp0457139

Google Scholar

[15] M. Epifani, J. Arbiol, R. Daz, M.J. Perlvarez, P. Siciliano, J.R. Morante, Synthesisof SnO2 and ZnO colloidal nanocrystals from the decomposition of tin(II)2-ethylhexanoate and zinc(II) 2-ethylhexanoate, Chem. Mater. 17 (2005) 6468–6472.

DOI: 10.1021/cm051642u

Google Scholar

[16] S.B. Zhu, L.M. Shan, X. Tian, X.Y. Zheng, D. Sun, X.B. Liu, L. Wang, Z.W. Zhou, Hydrothermal synthesis of oriented ZnO nanorodenanosheets hierarchicalarchitecture on zinc foil as flexible photoanodes for dyeesensitized solar cells, Ceram. Int. 40 (2014).

DOI: 10.1016/j.ceramint.2014.03.173

Google Scholar

[17] H. Kim, K. Yong, A highly efficient light capturing 2D (nanosheet)-1D(nanorod) combined hierarchical ZnO nanostructure for efficient quantum dot sensitized solar cells, Phys. Chem. Chem. Phys. 15 (2013) 2109-2116.

DOI: 10.1039/c2cp44045h

Google Scholar

[18] N. Kiomarsipour, R.S. Razavi, Hydrothermal synthesis of ZnO nanopigments with high UV absorption and vis/NIR reflectance, Ceram. Int. 40 (2014) 11261-11268.

DOI: 10.1016/j.ceramint.2014.03.178

Google Scholar

[19] S. Limpijumnong, S.B. Zhang, S.H. Wei, C.H. Park, Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony- doped p-type zinc oxide, Phys. Rev. Lett. 92 (2004) 155504-01-04.

DOI: 10.1103/physrevlett.92.155504

Google Scholar

[20] L. Saikia, D. Bhuyan, M. Saikia, B. Malakar, D.K. Dutta, P. Sengupta, Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light, Appl. Catal. A: Gen. 490 (2015) 42-49.

DOI: 10.1016/j.apcata.2014.10.053

Google Scholar

[21] R. Nasser, H. Elhouichet, M. Férid, Effect of Mn doping on structural, optical and photocatalytic behaviors of hydrothermal Zn1-xMnxS nanocrystals, Appl. Surf. Sci. 351 (2015) 1122-1130.

DOI: 10.1016/j.apsusc.2015.06.096

Google Scholar