[1]
M. Panizza, P. Michaud, G. Cerisola, C. Comninellis, Electrochemical treatment of wastewaters containing organic pollutants on boron-doped diamond electrodes: prediction of specific energy consumption and required electrode area, Electrochemistry Communications, 3 (2001).
DOI: 10.1016/s1388-2481(01)00166-7
Google Scholar
[2]
D.-H. Ahn, W.-S. Chang, T.-I. Yoon, Dyestuff wastewater treatment using chemical oxidation, physical adsorption and fixed bed biofilm process, Process Biochemistry, 34 (1999) 429-439.
DOI: 10.1016/s0032-9592(98)00111-3
Google Scholar
[3]
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37-38.
DOI: 10.1038/238037a0
Google Scholar
[4]
S. Cao, J. Yu, g-C3N4-based photocatalysts for hydrogen generation, The Journal of Physical Chemistry Letters, 5 (2014) 2101-2107.
Google Scholar
[5]
Y. He, L. Zhang, B. Teng, M. Fan, New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel, Environmental Science & Technology, 49 (2014) 649-656.
Google Scholar
[6]
S. Esposito, B. Bonelli, M. Armandi, E. Garrone, G. Saracco, Nanoparticles of CoAPO-5: synthesis and comparison with microcrystalline samples, Physical Chemistry Chemical Physics, 17 (2015) 10774-10780.
DOI: 10.1039/c5cp00191a
Google Scholar
[7]
C. Huang, C. Li, G. Shi, Graphene based catalysts, Energy & Environmental Science, 5 (2012) 8848-8868.
Google Scholar
[8]
F. Wang, K. Zhang, Reduced graphene oxide–TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B, Journal of Molecular Catalysis A: Chemical, 345 (2011) 101-107.
DOI: 10.1016/j.molcata.2011.05.026
Google Scholar
[9]
B. Sun, L. Chen, Y. Xu, M. Liu, H. Yin, S. Ai, Ultrasensitive photoelectrochemical immunoassay of indole-3-acetic acid based on the MPA modified CdS/RGO nanocomposites decorated ITO electrode, Biosensors and Bioelectronics, 51 (2014) 164-169.
DOI: 10.1016/j.bios.2013.07.027
Google Scholar
[10]
Z. Zhan, L. Zheng, Y. Pan, G. Sun, L. Li, Self-powered, visible-light photodetector based on thermally reduced graphene oxide–ZnO (rGO–ZnO) hybrid nanostructure, Journal of Materials Chemistry, 22 (2012) 2589-2595.
DOI: 10.1039/c1jm13920g
Google Scholar
[11]
P. Gao, J. Liu, S. Lee, T. Zhang, D.D. Sun, High quality graphene oxide–CdS–Pt nanocomposites for efficient photocatalytic hydrogen evolution, Journal of Materials Chemistry, 22 (2012) 2292-2298.
DOI: 10.1039/c2jm15624e
Google Scholar
[12]
J. Xu, Y. Ao, M. Chen, A simple method for the preparation of Bi2WO6-reduced graphene oxide with enhanced photocatalytic activity under visible light irradiation, Materials Letters, 92 (2013) 126-128.
DOI: 10.1016/j.matlet.2012.10.038
Google Scholar
[13]
M. Groenewolt, M. Antonietti, Synthesis of g-C3N4 Nanoparticles in Mesoporous Silica Host Matrices, Advanced Materials, 17 (2005) 1789-1792.
DOI: 10.1002/adma.200401756
Google Scholar
[14]
W. Fan, R.A. Schoonheydt, B.M. Weckhuysen, Hydrothermal synthesis of Co-rich CoAPO-5 molecular sieves, Physical Chemistry Chemical Physics, 3 (2001) 3240-3246.
DOI: 10.1039/b103359j
Google Scholar
[15]
G. Liao, S. Chen, X. Quan, H. Yu, H. Zhao, Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation, Journal of Materials Chemistry, 22 (2012) 2721-2726.
DOI: 10.1039/c1jm13490f
Google Scholar
[16]
L. Zhou, J. Xu, H. Miao, F. Wang, X. Li, Catalytic oxidation of cyclohexane to cyclohexanol and cyclohexanone over Co3O4 nanocrystals with molecular oxygen, Applied Catalysis A: General, 292 (2005) 223-228.
DOI: 10.1016/j.apcata.2005.06.018
Google Scholar