[1]
I.A. Barbosa, P.C. Filho, D.L. Silva, et al, Metalloporphyrins immobilized in Fe3O4@SiO2mesoporous submicrospheres: reusable biomimetic catalysts for hydrocarbon oxidation, J. Colloid. Interf. Sci. 469(2016)296-309.
DOI: 10.1016/j.jcis.2016.01.059
Google Scholar
[2]
C. Wu, W. Fan, J. Chang, Functional mesoporous bioactive glass nanospheres: synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells,J. Mater. Chem. B. 21(2013) 2710-2718.
DOI: 10.1039/c3tb20275e
Google Scholar
[3]
S. Huang, Y.Fan, Z.Cheng, et al, Magnetic mesoporous silica spheres for drug targeting and controlled release, J. Phys. Chem. C 113(2009) 1775-1784.
DOI: 10.1021/jp808886c
Google Scholar
[4]
S.X. Zhang, Y.Y. Zhang, J.S. Liu, et al, Thiol modified Fe3O4@SiO2 as arobust, high effective, and recycling magnetic sorbent for mercury removal, J.Chem. Eng. J. 226(2013) 30-38.
DOI: 10.1016/j.cej.2013.04.060
Google Scholar
[5]
H.F. Liu, S.F. Ji, H. Yang, et al. Ultrasonic-assisted ultra-rapid synthesis of monodisperse meso-SiO2@Fe3O4 microspheres with enhanced mesoporous structure, J. Ultrason. Sonochem. 21 (2014) 505-512.
DOI: 10.1016/j.ultsonch.2013.08.010
Google Scholar
[6]
Q. Zhang, X. Wang, P.Z. Li, et al. Cancer treatment: biocompatible, uniform, and redispersible mesoporous silica nanoparticles for cancer-targeted drug delivery in vivo, J. Adv. Funct. Mater.24(17) (2014) 2413-2413.
DOI: 10.1002/adfm.201470105
Google Scholar
[7]
Q.Y. Li, Q.Q. Zhu, Q. Wei, et al, Pore Controllable Regulation and Laccase Immobilization of Hollow Mesoporous SiO2/Fe3O4 Microspheres, J.Adv. Mater.833 (2013) 93-98.
Google Scholar
[8]
T. Sen, A. Sebastianelli, I.J. Bruce, Mesoporous silica-magnetite nanocomposite: fabrication and applications in magnetic bioseparations, J. Am. Chem. Soc. 128 (2006) 7130-7131.
DOI: 10.1021/ja061393q
Google Scholar
[9]
M. Taheran, M. Naghdi, S.K. Brar, et al, Degradation of chlortetracycline using immobilized laccase on Polyacrylonitrile-biochar composite nanofibrous membrane.Sci. Total. Environ. 315 (2017) 605-606.
DOI: 10.1016/j.scitotenv.2017.06.185
Google Scholar
[10]
H.H.P. Yiu, P.A. Wright, N.P. Botting, Enzyme immobilisation using siliceous mesoporous molecular sieves, J. Micropor. Mesopor. Mat. 44 (2001) 763-768.
DOI: 10.1016/s1387-1811(01)00258-x
Google Scholar
[11]
Q.Y. Li, Y.F. Chen, D.D. Zeng, et al, Photocatalytic characterization of Silica coated titania nanoparticles with tunable coatings,J. Nanopart. Res. 7 (2005) 295-299.
DOI: 10.1007/s11051-004-5944-1
Google Scholar
[12]
S.L. Chen, P. Dong, G.H. Yang, The size dependence of growth rate of monodisperse silica particles from tetraalkoxysilane, J. Colloid. Interf. Sci. 189 (1997) 268–272.
DOI: 10.1006/jcis.1997.4809
Google Scholar
[13]
Q.Y. Li, P.P. Wang, Y.L. Zhou, et al, A magnetic mesorporous SiO2/Fe3O4 hollow microsphere with a novel network-like composite shell: synthesis and application on laccase immobilization,J. Sol-Gel. Sci. Techn.78 (2016) 523-530.
DOI: 10.1007/s10971-016-3967-6
Google Scholar
[14]
J.F. Diaz, K.J.B.Jr. Enzyme immobilization in MCM-41 molecular sieve,J. Mol. Catal. B-Enzym. 2(2–3) (1996) 115-126.
Google Scholar
[15]
Y. Yang, Y. Xu, Y. Yang, et al, Laccase immobilized on mesoporous SiO2 and its use for degradation of chlorophenol pesticides,Russ. J. Phys. Chem. A+. 90 (2016) 2044-(2054).
DOI: 10.1134/s0036024416100307
Google Scholar