Effect of WO3 on the Performances of Cordierite Ceramics Synthesized by Using Kyanite as Raw Materials

Article Preview

Abstract:

In order to synthesize cordierite ceramics with low thermal expansion coefficient and good properties, in our work, the cordierite ceramics were prepared by using talc, natural containing zirconium kyanite, common kyanite and industrial Al2O3 as raw materials, introducing the right amount of WO3 (introducing tungsten acid) as catalyst. The effects of the introduced WO3 on the phase composition, sintering characters, microstructure and thermal expansion coefficient of the cordierite ceramics were investigated. The results show that the introduction of WO3 can eliminate the intermediate phase magnesia-alumina spinel and promote the formation of cordierite; the as-prepared cordierite ceramics synthesized by using natural containing zirconium kyanite as raw materials have high densification degree and low thermal expansion coefficient (1.53×10-6/°C, Rt~1000 °C).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

99-104

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Aşkın A, İlknur Tatar, Şule Kılınç, et al. The Utilization of Waste Magnesite in the Production of the Cordierite Ceramic [J]. Energy Procedia, 2017, 107:137-143.

DOI: 10.1016/j.egypro.2016.12.151

Google Scholar

[2] Naga S M, Sayed M, Elmaghraby H F, et al. Fabrication and Properties of Cordierite / Anorthite Composites [J]. Ceramics International, 2017, 43(8):6024-6028.

DOI: 10.1016/j.ceramint.2017.01.142

Google Scholar

[3] Zhang X B, Xu J, Ren X J, et al. Preparation and Characterization of Porous Cordierite Ceramics from Coal Fly Ash [J]. Key Engineering Materials, 2007, 336-338(2):1898-(1900).

DOI: 10.4028/www.scientific.net/kem.336-338.1898

Google Scholar

[4] Boccaccini D N, Leonelli C, Rivasi M R, et al. Microstructural Investigations in Cordierite-Mullite Refractories [J]. Ceramics International, 2005, 31(3):417-432.

DOI: 10.1016/j.ceramint.2004.06.005

Google Scholar

[5] Li Y, Cheng X, Zhang R, et al. Effect of Excess MgO on the Properties of Cordierite Ceramic Sintered by Solid-state Method [J]. International Journal of Applied Ceramic Technology, 2015, 12(2):443-450.

DOI: 10.1111/ijac.12174

Google Scholar

[6] González-Velasco J R, Ferret R, López-Fonseca R, et al. Influence of Particle Size Distribution of Precursor Oxides on the Synthesis of Cordierite by Solid-state Reaction [J]. Powder Technology, 2005, 153(1):34-42.

DOI: 10.1016/j.powtec.2005.01.022

Google Scholar

[7] Menchi A M, Scian A N. Mechanism of Cordierite Formation Obtained by the Sol-Gel Technique [J]. Materials Letters, 2005, 59(21):2664-2667.

DOI: 10.1016/j.matlet.2005.04.014

Google Scholar

[8] Zhu K, Yang D Y, Wu J, et al. Synthesis of Cordierite with Low Thermal Expansion Coefficient [J]. Advanced Materials Research, 2010, 105-106(1):802-804.

DOI: 10.4028/www.scientific.net/amr.105-106.802

Google Scholar

[9] Benhammou A, Hafiane Y E, Nibou L, et al. Mechanical Behavior and Ultrasonic Non-destructive Characterization of Elastic Properties of Cordierite-based Ceramics [J]. Ceramics International, 2013, 39:21-27.

DOI: 10.1016/j.ceramint.2012.06.061

Google Scholar

[10] Njoya D, Elimbi A, Fouejio D, et al. Effects of Two Mixtures of Kaolin-talc-bauxite and Firing Temperatures on the Characteristics of Cordierite-based Ceramics[J]. Journal of Building Engineering, 2016, 8:99-106.

DOI: 10.1016/j.jobe.2016.10.004

Google Scholar

[11] Orosco P, Ruiz M D C, González J. Synthesis of Cordierite by Dolomite and Kaolinitic Clay Chlorination. Study of the Phase Transformations and Reaction Mechanism [J]. Powder Technology, 2014, 267:111-118.

DOI: 10.1016/j.powtec.2014.07.009

Google Scholar

[12] Bejjaoui R, Benhammou A, Nibou L, et al. Synthesis and Characterization of Cordierite Ceramic from Moroccan Stevensite and Andalusite [J]. Applied Clay Science, 2010, 49(3):336-340.

DOI: 10.1016/j.clay.2010.06.004

Google Scholar

[13] Zhou J E, Dong Y, Hampshire S, et al. Utilization of Sepiolite in the Synthesis of Porous Cordierite Ceramics [J]. Applied Clay Science, 2011, 52(3):328-332.

DOI: 10.1016/j.clay.2011.02.001

Google Scholar

[14] Liu X, He Q, Wang H, et al. Thermal Expansion of Kyanite at Ambient Pressure: An X-ray powder diffraction study up to 1000°C [J]. Geoscience Frontiers, 2010, 1(1):91-97.

DOI: 10.1016/j.gsf.2010.07.002

Google Scholar

[15] Qin M L, Wang X T, Wang Z F, et al. Effect of ZrO2 Addition on the Preparation of Cordierite Materials [J]. Journal of Artificial Crystal, 2015, 44(11):3240-3244.

Google Scholar

[16] Nakahara M, Kondo Y, Hamano K. Effect of Particle Size of Powders Ground by Ball Milling on Densification of Cordierite Ceramics[J]. Journal of the Ceramic Society of Japan, 2010, 107(1244):308-312.

DOI: 10.2109/jcersj.107.308

Google Scholar

[17] Beall D M, Merbel G A. Fabrication Method of Ultra Low Thermal Expansion Cordierite Structures [P]. CN 1329582 A[P]. (2002).

Google Scholar

[18] Lachman I M, Bagley R D, Lewis R M. Thermal Expansion of Extruded Cordierite Ceramics [J]. American Ceramic Society Bulletin, 1981, 60(2):202-205.

Google Scholar

[19] Shi Z M, Liang K M, Gu S R. Effects of CeO2, on Phase Transformation towards Cordierite in MgO-Al2O3-SiO2 System [J]. Materials Letters, 2001, 51(1):68-72.

DOI: 10.1016/s0167-577x(01)00267-1

Google Scholar

[20] Xu X, Xu X, Wu J, et al. Effect of Sm2O3, on Microstructure, Thermal Shock Resistance and Thermal Conductivity of Cordierite-mullite-corundum Composite Ceramics for Solar Heat Transmission Pipeline [J]. Ceramics International, 2016, 42(12):13525-13534.

DOI: 10.1016/j.ceramint.2016.05.145

Google Scholar

[21] Lu S, Zhang J, Sun Y, et al. Preparation and Characterization of CuO-CeO2-ZrO2 /Cordierite Monolith Catalysts [J]. Ceramics International, 2017, 43: 5957-5962.

DOI: 10.1016/j.ceramint.2017.01.118

Google Scholar

[22] Wang H F, Zhou H P. The Influence of Bi3+ on the Sintering of Cordierite Glass Ceramic [J]. Key Engineering Materials, 2005, 280-283:925-928.

DOI: 10.4028/www.scientific.net/kem.280-283.925

Google Scholar

[23] Li F, Shen B, Tian L, et al. Enhancement of SCR Activity and Mechanical Stability on Cordierite Supported V2O5-WO3/TiO2, Catalyst by Substrate Acid Pretreatment and Addition of Silica [J]. Powder Technology, 2016, 297:384-391.

DOI: 10.1016/j.powtec.2016.04.050

Google Scholar

[24] Evans J S O, Mary T A, Sleight A W. Negative Thermal Expansion from 0.3 to 1050 K in Zirconium Tungstate, ZrW2O8[J]. Science, 1996, 272(5258):90-92.

DOI: 10.1126/science.272.5258.90

Google Scholar

[25] Tani J I, Takahashi M, Kido H. Fabrication and Thermal Expansion Properties of ZrW2O8/Zr2WP2O12, Composites [J]. Journal of the European Ceramic Society, 2010, 30(6):1483-1488.

DOI: 10.1016/j.jeurceramsoc.2009.11.010

Google Scholar