[1]
Aşkın A, İlknur Tatar, Şule Kılınç, et al. The Utilization of Waste Magnesite in the Production of the Cordierite Ceramic [J]. Energy Procedia, 2017, 107:137-143.
DOI: 10.1016/j.egypro.2016.12.151
Google Scholar
[2]
Naga S M, Sayed M, Elmaghraby H F, et al. Fabrication and Properties of Cordierite / Anorthite Composites [J]. Ceramics International, 2017, 43(8):6024-6028.
DOI: 10.1016/j.ceramint.2017.01.142
Google Scholar
[3]
Zhang X B, Xu J, Ren X J, et al. Preparation and Characterization of Porous Cordierite Ceramics from Coal Fly Ash [J]. Key Engineering Materials, 2007, 336-338(2):1898-(1900).
DOI: 10.4028/www.scientific.net/kem.336-338.1898
Google Scholar
[4]
Boccaccini D N, Leonelli C, Rivasi M R, et al. Microstructural Investigations in Cordierite-Mullite Refractories [J]. Ceramics International, 2005, 31(3):417-432.
DOI: 10.1016/j.ceramint.2004.06.005
Google Scholar
[5]
Li Y, Cheng X, Zhang R, et al. Effect of Excess MgO on the Properties of Cordierite Ceramic Sintered by Solid-state Method [J]. International Journal of Applied Ceramic Technology, 2015, 12(2):443-450.
DOI: 10.1111/ijac.12174
Google Scholar
[6]
González-Velasco J R, Ferret R, López-Fonseca R, et al. Influence of Particle Size Distribution of Precursor Oxides on the Synthesis of Cordierite by Solid-state Reaction [J]. Powder Technology, 2005, 153(1):34-42.
DOI: 10.1016/j.powtec.2005.01.022
Google Scholar
[7]
Menchi A M, Scian A N. Mechanism of Cordierite Formation Obtained by the Sol-Gel Technique [J]. Materials Letters, 2005, 59(21):2664-2667.
DOI: 10.1016/j.matlet.2005.04.014
Google Scholar
[8]
Zhu K, Yang D Y, Wu J, et al. Synthesis of Cordierite with Low Thermal Expansion Coefficient [J]. Advanced Materials Research, 2010, 105-106(1):802-804.
DOI: 10.4028/www.scientific.net/amr.105-106.802
Google Scholar
[9]
Benhammou A, Hafiane Y E, Nibou L, et al. Mechanical Behavior and Ultrasonic Non-destructive Characterization of Elastic Properties of Cordierite-based Ceramics [J]. Ceramics International, 2013, 39:21-27.
DOI: 10.1016/j.ceramint.2012.06.061
Google Scholar
[10]
Njoya D, Elimbi A, Fouejio D, et al. Effects of Two Mixtures of Kaolin-talc-bauxite and Firing Temperatures on the Characteristics of Cordierite-based Ceramics[J]. Journal of Building Engineering, 2016, 8:99-106.
DOI: 10.1016/j.jobe.2016.10.004
Google Scholar
[11]
Orosco P, Ruiz M D C, González J. Synthesis of Cordierite by Dolomite and Kaolinitic Clay Chlorination. Study of the Phase Transformations and Reaction Mechanism [J]. Powder Technology, 2014, 267:111-118.
DOI: 10.1016/j.powtec.2014.07.009
Google Scholar
[12]
Bejjaoui R, Benhammou A, Nibou L, et al. Synthesis and Characterization of Cordierite Ceramic from Moroccan Stevensite and Andalusite [J]. Applied Clay Science, 2010, 49(3):336-340.
DOI: 10.1016/j.clay.2010.06.004
Google Scholar
[13]
Zhou J E, Dong Y, Hampshire S, et al. Utilization of Sepiolite in the Synthesis of Porous Cordierite Ceramics [J]. Applied Clay Science, 2011, 52(3):328-332.
DOI: 10.1016/j.clay.2011.02.001
Google Scholar
[14]
Liu X, He Q, Wang H, et al. Thermal Expansion of Kyanite at Ambient Pressure: An X-ray powder diffraction study up to 1000°C [J]. Geoscience Frontiers, 2010, 1(1):91-97.
DOI: 10.1016/j.gsf.2010.07.002
Google Scholar
[15]
Qin M L, Wang X T, Wang Z F, et al. Effect of ZrO2 Addition on the Preparation of Cordierite Materials [J]. Journal of Artificial Crystal, 2015, 44(11):3240-3244.
Google Scholar
[16]
Nakahara M, Kondo Y, Hamano K. Effect of Particle Size of Powders Ground by Ball Milling on Densification of Cordierite Ceramics[J]. Journal of the Ceramic Society of Japan, 2010, 107(1244):308-312.
DOI: 10.2109/jcersj.107.308
Google Scholar
[17]
Beall D M, Merbel G A. Fabrication Method of Ultra Low Thermal Expansion Cordierite Structures [P]. CN 1329582 A[P]. (2002).
Google Scholar
[18]
Lachman I M, Bagley R D, Lewis R M. Thermal Expansion of Extruded Cordierite Ceramics [J]. American Ceramic Society Bulletin, 1981, 60(2):202-205.
Google Scholar
[19]
Shi Z M, Liang K M, Gu S R. Effects of CeO2, on Phase Transformation towards Cordierite in MgO-Al2O3-SiO2 System [J]. Materials Letters, 2001, 51(1):68-72.
DOI: 10.1016/s0167-577x(01)00267-1
Google Scholar
[20]
Xu X, Xu X, Wu J, et al. Effect of Sm2O3, on Microstructure, Thermal Shock Resistance and Thermal Conductivity of Cordierite-mullite-corundum Composite Ceramics for Solar Heat Transmission Pipeline [J]. Ceramics International, 2016, 42(12):13525-13534.
DOI: 10.1016/j.ceramint.2016.05.145
Google Scholar
[21]
Lu S, Zhang J, Sun Y, et al. Preparation and Characterization of CuO-CeO2-ZrO2 /Cordierite Monolith Catalysts [J]. Ceramics International, 2017, 43: 5957-5962.
DOI: 10.1016/j.ceramint.2017.01.118
Google Scholar
[22]
Wang H F, Zhou H P. The Influence of Bi3+ on the Sintering of Cordierite Glass Ceramic [J]. Key Engineering Materials, 2005, 280-283:925-928.
DOI: 10.4028/www.scientific.net/kem.280-283.925
Google Scholar
[23]
Li F, Shen B, Tian L, et al. Enhancement of SCR Activity and Mechanical Stability on Cordierite Supported V2O5-WO3/TiO2, Catalyst by Substrate Acid Pretreatment and Addition of Silica [J]. Powder Technology, 2016, 297:384-391.
DOI: 10.1016/j.powtec.2016.04.050
Google Scholar
[24]
Evans J S O, Mary T A, Sleight A W. Negative Thermal Expansion from 0.3 to 1050 K in Zirconium Tungstate, ZrW2O8[J]. Science, 1996, 272(5258):90-92.
DOI: 10.1126/science.272.5258.90
Google Scholar
[25]
Tani J I, Takahashi M, Kido H. Fabrication and Thermal Expansion Properties of ZrW2O8/Zr2WP2O12, Composites [J]. Journal of the European Ceramic Society, 2010, 30(6):1483-1488.
DOI: 10.1016/j.jeurceramsoc.2009.11.010
Google Scholar