The In Situ Preparation of MgAl2O4/YAG Eutectic Composites by Reaction Sintering Using Induction Heating

Article Preview

Abstract:

High density MgAl2O4/YAG (yttrium aluminum garnet) eutectic composites were successfully prepared by in-situ reaction sintering using induction heating (IH). The effects of IH time and the starting materials composition on the phase composition and microstructure were investigated. The results showed that the eutectic composites consisted of only MgAl2O4 and YAG phase could be prepared by IH in a short time in a range of Al2O3/MgO ratio between 1~1.54. Compared to conventional sintering (CS), the solubility of Al2O3 in spinel is remarkably enhanced under the synergistic effects of high temperature and induced electromagnetic field. The higher YAG content facilitates the formation of more eutectic liquid phase, which favors to obtain a more homogeneous and denser interpenetrating network structure.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

111-117

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zhang, H.J. Su, L. Liu, Microstructure and fracture toughness of Al2O3/Y3Al5O12 (YAG) Eutectic by laser melting and directional solidification, Mater. Sci. tech. Ser, 15 (2007) 741-745.

Google Scholar

[2] S. Wang, T. Akatsu, Y. Tanabe, E. Yasuda, Phase compositions and microstructural characteristics of solidified Al2O3-rich spinel solid solution/YAG composite, J. Eur. Ceram. Soc., 20 (2000) 39-43.

DOI: 10.1016/s0955-2219(99)00073-4

Google Scholar

[3] S. Abalı, Effect of growth rate on the microstructure and mechanical behavior of directionally solidified Y3Al5O12/MgAl2O4 eutectics, J. Cryst. Growth, 391 (2014) 18-24.

DOI: 10.1016/j.jcrysgro.2013.12.050

Google Scholar

[4] J. LLorca, V.M. Orera, Directionally solidified eutectic ceramic oxides, Prog. Mater. Sci., 51 (2006) 711.

DOI: 10.1016/j.pmatsci.2005.10.002

Google Scholar

[5] J.H. Lee, A. Yoshikawa, T. Fukuda, Y. Waku, Growth and characterization of Al2O3/Y3Al5O12/ZrO2 ternary eutectic fibers, J. Cryst Growth, 231 (2001) 115-120.

DOI: 10.1016/s0022-0248(01)01375-6

Google Scholar

[6] J. Zhang, N. Su, L. Liu, Experimental study on laser melting of Al2O3/YAG eutectic in situ composite ceramics, Journal of Aeronautical materials, 23 (2003) 171-174.

Google Scholar

[7] H.J. Su, J. Zhang, L. Liu, et al, The preparation and microstructure of Al2O3/YAG eutectic ceramics by laser rapid melting and solidification, Journal of Beihang University, 33 (2007) 846-850.

Google Scholar

[8] M.C. Mesa, P.B. Oliete, J.Y. Pastor, A. Martín, J. LLorca, Mechanical properties up to 1900 K of Al2O3/Er3Al5O12/ZrO2 eutectic ceramics grown by the laser floating zone method, J. Eur. Ceram. Soc., 34 (2014) 2081-(2087).

DOI: 10.1016/j.jeurceramsoc.2013.11.013

Google Scholar

[9] H.K. Park, I.J. Shon, J.K. Yoon, Consolidation of nanostructured NbSi2-SiC composite synthesized by high-frequency induction heated combustion, J. Alloys. Compd., 426 (2006) 322-326.

DOI: 10.1016/j.jallcom.2006.01.085

Google Scholar

[10] I.Y. Ko, J.H. Park, J.K. Yoo, Consolidation and mechanical properties of nanostructured MoSi2 from mechanically reacted powder by high-frequency induction-heated sintering, J. Alloys. Compd., 505 (2010) L31-L34.

DOI: 10.1016/j.jallcom.2010.06.119

Google Scholar

[11] I.J. Shon, D.M. Lee, J.M. Doh, et al, Consolidation and mechanical properties of nanostructured MoSi2-SiC-Si3N4 from mechanically activated powder by high frequency induction heated sintering, Mater. Sci. Eng. A, 528 (2011) 1212-1215.

DOI: 10.1016/j.msea.2010.10.063

Google Scholar

[12] I.J. Shon, D.M. Lee, J.M. Doh, Consolidation and mechanical properties of nanostructured MoSi2-SiC-Si3N4 from mechanically activated powder by high frequency induction heated sintering, Mater. Sci. Eng. A, 528 (2011) 1212-1215.

DOI: 10.1016/j.msea.2010.10.063

Google Scholar

[13] H.J. Su, J. Zhang, J.Z. Yu, L. Liu, Directional solidification and microstructural development of Al2O3/GdAlO3 eutectic ceramic in situ composite under rapid growth conditions, J. Alloys. Compd., 509 (2011) 4420-4425.

DOI: 10.1016/j.jallcom.2011.01.107

Google Scholar

[14] M.C. Mesa, P.B. Olite, V.M. Orera, J.Y. Pastor, A. Martin, J. Llorca, Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method, 31 (2011) 1241-1250.

DOI: 10.1016/j.jeurceramsoc.2010.05.004

Google Scholar

[15] J.Y. Pastor, A. Martín, J.M. Molina-Aldareguía, Superplastic deformation of directionally solidified nanofibrillar Al2O3-Y3Al5O12-ZrO2 eutectics, J. Eur. Ceram. Soc., 33 (2013) 2579-2586.

DOI: 10.1016/j.jeurceramsoc.2013.03.033

Google Scholar

[16] T. Isobe, M. Omori, S. Uchida, Consolidation of Al2O3-Y3Al5O12 (YAG) eutectic powder prepared from induction-melted solid and strength at high temperature, J. Eur. Ceram. Soc., 22 (2002) 2621-2625.

DOI: 10.1016/s0955-2219(02)00125-5

Google Scholar

[17] J.D. Hunt, K.A. Jackson, Binary eutectic solidification, Trans Metall Soc AIME, 236 (1966) 843-852.

Google Scholar