[1]
J. Zhang, H.J. Su, L. Liu, Microstructure and fracture toughness of Al2O3/Y3Al5O12 (YAG) Eutectic by laser melting and directional solidification, Mater. Sci. tech. Ser, 15 (2007) 741-745.
Google Scholar
[2]
S. Wang, T. Akatsu, Y. Tanabe, E. Yasuda, Phase compositions and microstructural characteristics of solidified Al2O3-rich spinel solid solution/YAG composite, J. Eur. Ceram. Soc., 20 (2000) 39-43.
DOI: 10.1016/s0955-2219(99)00073-4
Google Scholar
[3]
S. Abalı, Effect of growth rate on the microstructure and mechanical behavior of directionally solidified Y3Al5O12/MgAl2O4 eutectics, J. Cryst. Growth, 391 (2014) 18-24.
DOI: 10.1016/j.jcrysgro.2013.12.050
Google Scholar
[4]
J. LLorca, V.M. Orera, Directionally solidified eutectic ceramic oxides, Prog. Mater. Sci., 51 (2006) 711.
DOI: 10.1016/j.pmatsci.2005.10.002
Google Scholar
[5]
J.H. Lee, A. Yoshikawa, T. Fukuda, Y. Waku, Growth and characterization of Al2O3/Y3Al5O12/ZrO2 ternary eutectic fibers, J. Cryst Growth, 231 (2001) 115-120.
DOI: 10.1016/s0022-0248(01)01375-6
Google Scholar
[6]
J. Zhang, N. Su, L. Liu, Experimental study on laser melting of Al2O3/YAG eutectic in situ composite ceramics, Journal of Aeronautical materials, 23 (2003) 171-174.
Google Scholar
[7]
H.J. Su, J. Zhang, L. Liu, et al, The preparation and microstructure of Al2O3/YAG eutectic ceramics by laser rapid melting and solidification, Journal of Beihang University, 33 (2007) 846-850.
Google Scholar
[8]
M.C. Mesa, P.B. Oliete, J.Y. Pastor, A. Martín, J. LLorca, Mechanical properties up to 1900 K of Al2O3/Er3Al5O12/ZrO2 eutectic ceramics grown by the laser floating zone method, J. Eur. Ceram. Soc., 34 (2014) 2081-(2087).
DOI: 10.1016/j.jeurceramsoc.2013.11.013
Google Scholar
[9]
H.K. Park, I.J. Shon, J.K. Yoon, Consolidation of nanostructured NbSi2-SiC composite synthesized by high-frequency induction heated combustion, J. Alloys. Compd., 426 (2006) 322-326.
DOI: 10.1016/j.jallcom.2006.01.085
Google Scholar
[10]
I.Y. Ko, J.H. Park, J.K. Yoo, Consolidation and mechanical properties of nanostructured MoSi2 from mechanically reacted powder by high-frequency induction-heated sintering, J. Alloys. Compd., 505 (2010) L31-L34.
DOI: 10.1016/j.jallcom.2010.06.119
Google Scholar
[11]
I.J. Shon, D.M. Lee, J.M. Doh, et al, Consolidation and mechanical properties of nanostructured MoSi2-SiC-Si3N4 from mechanically activated powder by high frequency induction heated sintering, Mater. Sci. Eng. A, 528 (2011) 1212-1215.
DOI: 10.1016/j.msea.2010.10.063
Google Scholar
[12]
I.J. Shon, D.M. Lee, J.M. Doh, Consolidation and mechanical properties of nanostructured MoSi2-SiC-Si3N4 from mechanically activated powder by high frequency induction heated sintering, Mater. Sci. Eng. A, 528 (2011) 1212-1215.
DOI: 10.1016/j.msea.2010.10.063
Google Scholar
[13]
H.J. Su, J. Zhang, J.Z. Yu, L. Liu, Directional solidification and microstructural development of Al2O3/GdAlO3 eutectic ceramic in situ composite under rapid growth conditions, J. Alloys. Compd., 509 (2011) 4420-4425.
DOI: 10.1016/j.jallcom.2011.01.107
Google Scholar
[14]
M.C. Mesa, P.B. Olite, V.M. Orera, J.Y. Pastor, A. Martin, J. Llorca, Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method, 31 (2011) 1241-1250.
DOI: 10.1016/j.jeurceramsoc.2010.05.004
Google Scholar
[15]
J.Y. Pastor, A. Martín, J.M. Molina-Aldareguía, Superplastic deformation of directionally solidified nanofibrillar Al2O3-Y3Al5O12-ZrO2 eutectics, J. Eur. Ceram. Soc., 33 (2013) 2579-2586.
DOI: 10.1016/j.jeurceramsoc.2013.03.033
Google Scholar
[16]
T. Isobe, M. Omori, S. Uchida, Consolidation of Al2O3-Y3Al5O12 (YAG) eutectic powder prepared from induction-melted solid and strength at high temperature, J. Eur. Ceram. Soc., 22 (2002) 2621-2625.
DOI: 10.1016/s0955-2219(02)00125-5
Google Scholar
[17]
J.D. Hunt, K.A. Jackson, Binary eutectic solidification, Trans Metall Soc AIME, 236 (1966) 843-852.
Google Scholar