Hydrothermal Synthesis and Phase Formation Mechanism of TiO2(B) Nanorods via Alkali Metal Titanate Phase Transformation

Article Preview

Abstract:

Titanium dioxide (B phase) with 1-D structures was successfully fabricated via a hydrothermal method with a subsequent ion-exchange process and calcination. P25, titanium isopropoxide (TTIP), rutile and also anatase were used as Ti precursors in the alkali hydrothermal system. TTIP promoted an elongation of nanorod morphology whereas the other precursors produced short nanorod structures. The different types of titanium precursors did not have any influence on the phase transformation during the fabrication process. Na2Ti6O13 was the primary intermediate product after washing the hydrothermal sample. H2Ti3O7 was the secondary intermediate phase obtained following proton-exchange of Na2Ti6O13 in HNO3 solution. Finally, the TiO2(B) phase was the product of calcination of the secondary intermediate product at 400°C for 5 hr. A phase transformation mechanism is presented based on an investigation of products at each of the steps. The effects of the synthesis conditions on tailoring of the crystal morphology are discussed. The growth direction of the TiO2(B) nanorods was investigated by HR-TEM and SADP. Finally, the metastable phase of TiO2(B) was shown to be transformed to anatase during thermal treatment at temperatures higher than 400°C.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 283)

Pages:

23-36

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.F. Jacobs, I. Van-De-Poel, and P. Osseweijer, Sunscreens with Titanium dioxide (TiO2) nano-particles: A societal experiment, Nanoethics 4(2) (2010) 103–113.

DOI: 10.1007/s11569-010-0090-y

Google Scholar

[2] M.I. Dar, A.K. Chandiran, M. Grätzel, M.K. Nazeeruddin, and S.A. Shivashankar, Controlled synthesis of TiO2 nanoparticles and nanospheres using a microwave assisted approach for their application in dye-sensitized solar cells, J. Mater. Chem. A 2 (2014).

DOI: 10.1039/c3ta14130f

Google Scholar

[3] P.S. Shinde and C.H. Bhosale, Properties of chemical vapour deposited nanocrystalline TiO2 thin films and their use in dye-sensitized solar cells, J. Anal. Appl. Pyrolysis 82 (2008) 83–88.

DOI: 10.1016/j.jaap.2008.01.004

Google Scholar

[4] Y. Paz, Z. Luo, L. Rabenberg, and A. Heller, Photooxidative self-cleaning transparent titanium dioxide films on glass, J. Mater. Res. 10(11) (2011) 2842–2848.

DOI: 10.1557/jmr.1995.2842

Google Scholar

[5] C.J. Tavares, J. Vieira, L. Rebouta, G. Hungerford, P. Coutinho, V. Teixeira, J.O. Carneiro, and A J. Fernandes, Reactive sputtering deposition of photocatalytic TiO2 thin films on glass substrates, Mater. Sci. Eng. B. 138 (2007) 139–143.

DOI: 10.1016/j.mseb.2005.11.043

Google Scholar

[6] H. Lin, A.K. Rumaiz, M. Schulz, D. Wang, R. Rock, C.P. Huang, and S.I. Shah, Photocatalytic activity of pulsed laser deposited TiO2 thin films, Mater.. Sci. Eng. B. 151(2) (2008) 133–139.

DOI: 10.1016/j.mseb.2008.05.016

Google Scholar

[7] M.M. Mohamed, B.H.M. Asghar, and H.A. Muathen, Facile synthesis of mesoporous bicrystallized TiO2(B)/anatase (rutile) phases as active photocatalysts for nitrate reduction, Catal. Commun.28 (2012) 58–63.

DOI: 10.1016/j.catcom.2012.08.012

Google Scholar

[8] Y. Chimupala, P. Junploy, T. Hardcastle, A. Westwood, A. Scott, B. Johnson and R. Brydson, Universal synthesis method for mixed phase TiO2(B)/anatase TiO2 thin films on substrates via a modified low pressure chemical vapour deposition (LPCVD) route, J. Mater. Chem. A. 4 (2016).

DOI: 10.1039/c6ta01383j

Google Scholar

[9] M. René, B. Luc, and T. Michel, TiO2(B) a new form of titanium dioxide and the Potassium octatitanate K2Ti8O17, Mater. Res. Bull. 15 (1980) 1129–1133.

DOI: 10.1016/0025-5408(80)90076-8

Google Scholar

[10] A.G. Dylla, P. Xiao, G. Henkelman, and K.J. Stevenson, Morphological dependence of lithium insertion in nanocrystalline TiO2(B) nanoparticles and nanosheets, J. Phys. Chem. Lett. 3(15) (2012) 2015–(2019).

DOI: 10.1021/jz300766a

Google Scholar

[11] A.S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, and W.V. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices., Nat. Mater. 4 (2005) 366-377.

DOI: 10.1038/nmat1368

Google Scholar

[12] S. K. Parayil, H. S. Kibombo, L. Mahoney, C. Wu, M. Yoon, and R. T. Koodali, Synthesis of mixed phase anatase-TiO2(B) by a simple wet chemical method, Mater. Lett. 95 (2013) 175–177.

DOI: 10.1016/j.matlet.2012.12.109

Google Scholar

[13] H. Song, H. Jiang, T. Liu, X. Liu, and G. Meng, Preparation and photocatalytic activity of alkali titanate nano materials A2TinO2n+1 (A=Li, Na and K), Mater. Res. Bull. 42(2) (2007) 334–344.

DOI: 10.1016/j.materresbull.2006.05.025

Google Scholar

[14] K. Kiatkittipong, C. Ye, J. Scott, and R. Amal, Understanding hydrothermal titanate nanoribbon formation, Cryst. Growth Des. 10(3) (2010) 3618–3625.

DOI: 10.1021/cg1004984

Google Scholar

[15] K. Kiatkittipong, J. Scott, and R. Amal, Hydrothermally synthesized titanate nanostructures: Impact of heat treatment on particle characteristics and photocatalytic properties, ACS Appl. Mater. Interfaces. 3 (2011) 3988–3996.

DOI: 10.1021/am2008568

Google Scholar

[16] Z. Zheng, H. Liu, J. Ye, J. Zhao, E.R. Waclawik, and H. Zhu, Structure and contribution to photocatalytic activity of the interfaces in nanofibers with mixed anatase and TiO2(B) phases, J. Mol. Catal. A Chem. 316(1-2) (2010) 75-82.

DOI: 10.1016/j.molcata.2009.10.002

Google Scholar

[17] C. Huang, K. Zhu, M. Qi, Y. Zhuang, and C. Cheng, Preparation and photocatalytic activity of bicrystal phase TiO2 nanotubes containing TiO2-B and anatase, J. Phys. Chem. Solids. 73(6) (2012) 757–761.

DOI: 10.1016/j.jpcs.2012.01.018

Google Scholar

[18] A.R. Armstrong, G. Armstrong, J. Canales, and P.G. Bruce, TiO2-B Nanowires, Angew. Chem Int. Ed. Engl., 43 (2004) 2286–2288.

DOI: 10.1002/anie.200353571

Google Scholar

[19] G. Armstrong, A.R. Armstrong, J. Canales, and P.G. Bruce, Nanotubes with the TiO2-B structure, Chem. Commun. 19 (2005) 2454–2456.

DOI: 10.1039/b501883h

Google Scholar

[20] C.W. Peng, M. Richard-Plouet, T.Y. Ke, C.Y. Lee, H.T. Chiu, C. Marhic, E. Puzenat, F. Lemoigno, and L. Brohan, Chimie douce route to sodium hydroxo titanate nanowires with modulated structure and conversion to highly photoactive titanium dioxides, Chem. Mater. 20(23) (2208) 7228–7236.

DOI: 10.1021/cm8007039

Google Scholar

[21] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Titania nanotubes prepared by chemical processing, Adv. Mater. 11(15) (1999) 1307–1311.

DOI: 10.1002/(sici)1521-4095(199910)11:15<1307::aid-adma1307>3.0.co;2-h

Google Scholar

[22] M. Fehse, F. Fischer, C. Tessier, L. Stievano, and L. Monconduit, Tailoring of phase composition and morphology of TiO2-based electrode materials for lithium-ion batteries, J. Power Sources. 231 (2013) 23–28.

DOI: 10.1016/j.jpowsour.2012.12.058

Google Scholar

[23] Q. Chen, W. Zhou, G.H. Du, and L.M. Peng, Trititanate nanotubes made via a single alkali treatment, Adv. Mater., 14(17) (2002) 2000–(2003).

DOI: 10.1002/1521-4095(20020903)14:17<1208::aid-adma1208>3.0.co;2-0

Google Scholar

[24] J.P. Huang, D.D. Yuan, H.Z. Zhang, Y.L. Cao, G.R. Li, H.X. Yang, and X.P. Gao, Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries, RSC Adv. 3(31) (2013) 12593.

DOI: 10.1039/c3ra42413h

Google Scholar

[25] Y. Lei, J. Sun, H. Liu, X. Cheng, F. Chen, and Z. Liu, Atomic mechanism of predictable phase transition in dual-phase H2Ti3O7 /TiO2(B) nanofiber: An in situ heating TEM investigation," Chem. A Eur. J., 20 (2014) 11313–11317.

DOI: 10.1002/chem.201403272

Google Scholar

[26] K. Kiatkittipong, A. Iwase, J. Scott, and R. Amal, Photocatalysis of heat treated sodium- and hydrogen-titanate nanoribbons for water splitting, H2/O2 generation and oxalic acid oxidation, Chem. Eng. Sci., 93 (2013) 341–349.

DOI: 10.1016/j.ces.2013.02.001

Google Scholar

[27] B. Liu, A. Khare, and E.S. Aydil, TiO2-B/anatase core-shell heterojunction nanowires for photocatalysis, ACS Appl. Mater. Interfaces. 3 (2011) 4444–4450.

DOI: 10.1021/am201123u

Google Scholar

[28] W. Zhuang, L. Lu, X. Wu, W. Jin, M. Meng, Y. Zhu, and X. Lu, TiO2-B nanofibers with high thermal stability as improved anodes for lithium ion batteries, Electrochem. Commun. 27 (2013) 124–127.

DOI: 10.1016/j.elecom.2012.11.012

Google Scholar