[1]
J.F. Jacobs, I. Van-De-Poel, and P. Osseweijer, Sunscreens with Titanium dioxide (TiO2) nano-particles: A societal experiment, Nanoethics 4(2) (2010) 103–113.
DOI: 10.1007/s11569-010-0090-y
Google Scholar
[2]
M.I. Dar, A.K. Chandiran, M. Grätzel, M.K. Nazeeruddin, and S.A. Shivashankar, Controlled synthesis of TiO2 nanoparticles and nanospheres using a microwave assisted approach for their application in dye-sensitized solar cells, J. Mater. Chem. A 2 (2014).
DOI: 10.1039/c3ta14130f
Google Scholar
[3]
P.S. Shinde and C.H. Bhosale, Properties of chemical vapour deposited nanocrystalline TiO2 thin films and their use in dye-sensitized solar cells, J. Anal. Appl. Pyrolysis 82 (2008) 83–88.
DOI: 10.1016/j.jaap.2008.01.004
Google Scholar
[4]
Y. Paz, Z. Luo, L. Rabenberg, and A. Heller, Photooxidative self-cleaning transparent titanium dioxide films on glass, J. Mater. Res. 10(11) (2011) 2842–2848.
DOI: 10.1557/jmr.1995.2842
Google Scholar
[5]
C.J. Tavares, J. Vieira, L. Rebouta, G. Hungerford, P. Coutinho, V. Teixeira, J.O. Carneiro, and A J. Fernandes, Reactive sputtering deposition of photocatalytic TiO2 thin films on glass substrates, Mater. Sci. Eng. B. 138 (2007) 139–143.
DOI: 10.1016/j.mseb.2005.11.043
Google Scholar
[6]
H. Lin, A.K. Rumaiz, M. Schulz, D. Wang, R. Rock, C.P. Huang, and S.I. Shah, Photocatalytic activity of pulsed laser deposited TiO2 thin films, Mater.. Sci. Eng. B. 151(2) (2008) 133–139.
DOI: 10.1016/j.mseb.2008.05.016
Google Scholar
[7]
M.M. Mohamed, B.H.M. Asghar, and H.A. Muathen, Facile synthesis of mesoporous bicrystallized TiO2(B)/anatase (rutile) phases as active photocatalysts for nitrate reduction, Catal. Commun.28 (2012) 58–63.
DOI: 10.1016/j.catcom.2012.08.012
Google Scholar
[8]
Y. Chimupala, P. Junploy, T. Hardcastle, A. Westwood, A. Scott, B. Johnson and R. Brydson, Universal synthesis method for mixed phase TiO2(B)/anatase TiO2 thin films on substrates via a modified low pressure chemical vapour deposition (LPCVD) route, J. Mater. Chem. A. 4 (2016).
DOI: 10.1039/c6ta01383j
Google Scholar
[9]
M. René, B. Luc, and T. Michel, TiO2(B) a new form of titanium dioxide and the Potassium octatitanate K2Ti8O17, Mater. Res. Bull. 15 (1980) 1129–1133.
DOI: 10.1016/0025-5408(80)90076-8
Google Scholar
[10]
A.G. Dylla, P. Xiao, G. Henkelman, and K.J. Stevenson, Morphological dependence of lithium insertion in nanocrystalline TiO2(B) nanoparticles and nanosheets, J. Phys. Chem. Lett. 3(15) (2012) 2015–(2019).
DOI: 10.1021/jz300766a
Google Scholar
[11]
A.S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, and W.V. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices., Nat. Mater. 4 (2005) 366-377.
DOI: 10.1038/nmat1368
Google Scholar
[12]
S. K. Parayil, H. S. Kibombo, L. Mahoney, C. Wu, M. Yoon, and R. T. Koodali, Synthesis of mixed phase anatase-TiO2(B) by a simple wet chemical method, Mater. Lett. 95 (2013) 175–177.
DOI: 10.1016/j.matlet.2012.12.109
Google Scholar
[13]
H. Song, H. Jiang, T. Liu, X. Liu, and G. Meng, Preparation and photocatalytic activity of alkali titanate nano materials A2TinO2n+1 (A=Li, Na and K), Mater. Res. Bull. 42(2) (2007) 334–344.
DOI: 10.1016/j.materresbull.2006.05.025
Google Scholar
[14]
K. Kiatkittipong, C. Ye, J. Scott, and R. Amal, Understanding hydrothermal titanate nanoribbon formation, Cryst. Growth Des. 10(3) (2010) 3618–3625.
DOI: 10.1021/cg1004984
Google Scholar
[15]
K. Kiatkittipong, J. Scott, and R. Amal, Hydrothermally synthesized titanate nanostructures: Impact of heat treatment on particle characteristics and photocatalytic properties, ACS Appl. Mater. Interfaces. 3 (2011) 3988–3996.
DOI: 10.1021/am2008568
Google Scholar
[16]
Z. Zheng, H. Liu, J. Ye, J. Zhao, E.R. Waclawik, and H. Zhu, Structure and contribution to photocatalytic activity of the interfaces in nanofibers with mixed anatase and TiO2(B) phases, J. Mol. Catal. A Chem. 316(1-2) (2010) 75-82.
DOI: 10.1016/j.molcata.2009.10.002
Google Scholar
[17]
C. Huang, K. Zhu, M. Qi, Y. Zhuang, and C. Cheng, Preparation and photocatalytic activity of bicrystal phase TiO2 nanotubes containing TiO2-B and anatase, J. Phys. Chem. Solids. 73(6) (2012) 757–761.
DOI: 10.1016/j.jpcs.2012.01.018
Google Scholar
[18]
A.R. Armstrong, G. Armstrong, J. Canales, and P.G. Bruce, TiO2-B Nanowires, Angew. Chem Int. Ed. Engl., 43 (2004) 2286–2288.
DOI: 10.1002/anie.200353571
Google Scholar
[19]
G. Armstrong, A.R. Armstrong, J. Canales, and P.G. Bruce, Nanotubes with the TiO2-B structure, Chem. Commun. 19 (2005) 2454–2456.
DOI: 10.1039/b501883h
Google Scholar
[20]
C.W. Peng, M. Richard-Plouet, T.Y. Ke, C.Y. Lee, H.T. Chiu, C. Marhic, E. Puzenat, F. Lemoigno, and L. Brohan, Chimie douce route to sodium hydroxo titanate nanowires with modulated structure and conversion to highly photoactive titanium dioxides, Chem. Mater. 20(23) (2208) 7228–7236.
DOI: 10.1021/cm8007039
Google Scholar
[21]
T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Titania nanotubes prepared by chemical processing, Adv. Mater. 11(15) (1999) 1307–1311.
DOI: 10.1002/(sici)1521-4095(199910)11:15<1307::aid-adma1307>3.0.co;2-h
Google Scholar
[22]
M. Fehse, F. Fischer, C. Tessier, L. Stievano, and L. Monconduit, Tailoring of phase composition and morphology of TiO2-based electrode materials for lithium-ion batteries, J. Power Sources. 231 (2013) 23–28.
DOI: 10.1016/j.jpowsour.2012.12.058
Google Scholar
[23]
Q. Chen, W. Zhou, G.H. Du, and L.M. Peng, Trititanate nanotubes made via a single alkali treatment, Adv. Mater., 14(17) (2002) 2000–(2003).
DOI: 10.1002/1521-4095(20020903)14:17<1208::aid-adma1208>3.0.co;2-0
Google Scholar
[24]
J.P. Huang, D.D. Yuan, H.Z. Zhang, Y.L. Cao, G.R. Li, H.X. Yang, and X.P. Gao, Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries, RSC Adv. 3(31) (2013) 12593.
DOI: 10.1039/c3ra42413h
Google Scholar
[25]
Y. Lei, J. Sun, H. Liu, X. Cheng, F. Chen, and Z. Liu, Atomic mechanism of predictable phase transition in dual-phase H2Ti3O7 /TiO2(B) nanofiber: An in situ heating TEM investigation," Chem. A Eur. J., 20 (2014) 11313–11317.
DOI: 10.1002/chem.201403272
Google Scholar
[26]
K. Kiatkittipong, A. Iwase, J. Scott, and R. Amal, Photocatalysis of heat treated sodium- and hydrogen-titanate nanoribbons for water splitting, H2/O2 generation and oxalic acid oxidation, Chem. Eng. Sci., 93 (2013) 341–349.
DOI: 10.1016/j.ces.2013.02.001
Google Scholar
[27]
B. Liu, A. Khare, and E.S. Aydil, TiO2-B/anatase core-shell heterojunction nanowires for photocatalysis, ACS Appl. Mater. Interfaces. 3 (2011) 4444–4450.
DOI: 10.1021/am201123u
Google Scholar
[28]
W. Zhuang, L. Lu, X. Wu, W. Jin, M. Meng, Y. Zhu, and X. Lu, TiO2-B nanofibers with high thermal stability as improved anodes for lithium ion batteries, Electrochem. Commun. 27 (2013) 124–127.
DOI: 10.1016/j.elecom.2012.11.012
Google Scholar