[1]
K.E. Aifantis, S.A. Hackney, R.V. Kumar, High Energy Density Lithium Batteries-Materials, Engineering, Application. Wiley-VCH, Weinheim, (2010).
Google Scholar
[2]
M. Gu, Y. He, J. Zheng, C. Wang, Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges, Nano Energy 17 (2015) 366-383.
DOI: 10.1016/j.nanoen.2015.08.025
Google Scholar
[3]
X. Li, G. Lei, Z. Li, Y. Zhang, Q. Xiao, Carbon-encapsulated Si nanoparticle composite nanofibers with porous structure as lithiuom-ion battery anode, Solid State Ionics 261 (2014) 111-116.
DOI: 10.1016/j.ssi.2014.04.016
Google Scholar
[4]
J. Wu, Z. Zhu, H. Zhang, H. Zhang, H. Fu, H. Li, A. Wang, H. Zhang, Z. Hu, Improved electrochemical performance of the Silicon/Graphite-Tin composite anode material by modifying the surface morphology of the Cu current collector, Electrochim. Acta, 146 (2014).
DOI: 10.1016/j.electacta.2014.09.075
Google Scholar
[5]
Y. Chen, Y. Hu, Z. Shen, R. Chen, X. He, X. Zhang, Y. Zhang, K. Wu, sandwich structure of graphene-protected silicon/carbon nanofibers for litjium-ion battey anodes, Electrochim. Acta, 210 (2016) 53-60.
DOI: 10.1016/j.electacta.2016.05.086
Google Scholar
[6]
M.H. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, J. Cho, Silicon nanotuge battery anode, Nano Lett. 9 (2009) 3844-3847.
DOI: 10.1021/nl902058c
Google Scholar
[7]
U. Kasavajjula, C. Wang, A.J. Appleby, Nano- and bilk-Silicon-based secondary cells, J. Power Sources, 163 (2007) 1003-1039.
DOI: 10.1016/j.jpowsour.2006.09.084
Google Scholar
[8]
J. Zhang, C. Zhang, S. Wu, J. Zhang, Y. Zuo, C. Xue, C. Li, B. Cheng, high-performance lithium-ion battery with nano-porous polycrystalline silicon particles as anode, Electrochim. Acta, 208 (2016) 174-179.
DOI: 10.1016/j.electacta.2016.05.032
Google Scholar
[9]
H. Mi, F. Li, C. He, X. Chai, Q. Zhang, C. Li, Y. Li, J. Liu, Three-dimensional network structure of Silicon-graphene-polyaniline composites as high performance anodes for lithium-ion batteries, Electrochim. Acta, 190 (2016) 1032-1040.
DOI: 10.1016/j.electacta.2015.12.182
Google Scholar
[10]
X. Wang, L. Sun, R.A. Susantyoko, Q. Zhang, A hierarchical 3D carbon nanostructure for high areal capacity and flexible lithium ion batteries, Carbon, 98 (2016) 504-509.
DOI: 10.1016/j.carbon.2015.11.049
Google Scholar
[11]
M.G. Jeong, M. Islam, H.L. Du, Y.S. Lee, H.H. Sun, W. Choi, J.K. Lee, K.Y. Chung, H.G. Jung, Nitrigen-doped carbon coated porous silicon as high performance anode materials for lithium-ion batteries, Electrochim. Acta 209 (2016) 299-307.
DOI: 10.1016/j.electacta.2016.05.080
Google Scholar
[12]
G. Wang, B. Wang, X. Wang, J. Park, S. Dou, H. Ahn, K. Kim, Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries, J. Mater. Chem. 19 (2009) 8378-8384.
DOI: 10.1039/b914650d
Google Scholar
[13]
C.C. Ma, X.H. Shao, D.P. Cao, Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study, J. Mater. Chem. 22 (2012) 8911-8915.
DOI: 10.1039/c2jm00166g
Google Scholar
[14]
Z.H. Sheng, L. Shao, J.J. Chen, W.J. Bao, F.B. Wang, X.H. Xia, Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis, ACS Nano, 6 (2011) 4350-4358.
DOI: 10.1021/nn103584t
Google Scholar
[15]
J. Wu, Z. Zhu, H. Zhang, H. Fu, H. Li, A. Wang, H. Zhang, Z. Hu, A novel nano-structured interpenetrating phase composite of Silicon/graphite-tin for lithium-ion batteries anode materials, J. Alloys Compd. 596 (2014) 86-91.
DOI: 10.1016/j.jallcom.2014.01.187
Google Scholar
[16]
N. Liu, K. Huo, M.T. McDowell, J. Zhao, Y. Cui, Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes, Sci. Rep. 3 (2013).
DOI: 10.1038/srep01919
Google Scholar
[17]
D.S. Jung, M.H. Ryou, Y.J. Sung, S.B. Park, J.W. Choi, Recycling rice husks for high-capacity lithium battery anodes, PANS 110 (2013) 12229-12234.
DOI: 10.1073/pnas.1305025110
Google Scholar
[18]
L. Shi, W. Wang, A. Wang, K. Yuan, Y. Yang, Understanding the impact mechanism of the thermal effect on the porous silicon anode material preparation via magnesiothermic reduction, J. Alloy Compd. 661 (2016) 27-37.
DOI: 10.1016/j.jallcom.2015.11.196
Google Scholar