[1]
F.Li. Jinshan, H. Kou, L. Zhou, Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications. Mat. Sci. and Eng.: C. 60 (2016) 485-488.
DOI: 10.1016/j.msec.2015.11.074
Google Scholar
[2]
C. Matschegewski. et. al., Cell architecture-cell function dependencies on titanium arrays with regular geometry. Biomaterials. 31 (2010) 5729-5740.
DOI: 10.1016/j.biomaterials.2010.03.073
Google Scholar
[3]
R. Bhola. F. Su. C.E. Krull, Functionalization of titanium based metallic biomaterials for implant applications. J. of Mat. Sci.: Mat. in Med. 22 (2011) 1147-1159.
DOI: 10.1007/s10856-011-4305-8
Google Scholar
[4]
C.Wen. Y. Li, A newly developed biocompatible titanium alloy and its scaffolding by powder metallurgy. Key Eng. Mat. 520 (2012) 201-207.
DOI: 10.4028/www.scientific.net/kem.520.201
Google Scholar
[5]
I. Tsukrov. J. Novak, Effective elastic properties of solids with defects of irregular shapes. Int. J. of Solids and Struct. 39 (2002) 1539-1555.
DOI: 10.1016/s0020-7683(01)00285-2
Google Scholar
[6]
P. Majumdar. S.B. Singh. M. Chakraborty, Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques-a comparative study. Mat. Sci. and Eng.: A. 489 (2008) 419-425.
DOI: 10.1016/j.msea.2007.12.029
Google Scholar
[7]
Ya. Song. R. Yang. D. Li. Zh. Hu. Zh. Guo, Calculation of bulk modulus of titanium alloys by first principles electronic structure theory. J. of Comp.-Aided Mat. Design. 6 (1999) 355-362.
Google Scholar
[8]
A.A. Ershov. V.V. Kotov. Y.N. Loginov, Calculation of the compensation of a stamping tool after springback in the software package PAM-STAMP. Metallurgist. 56 (2012) 477-481.
DOI: 10.1007/s11015-012-9601-0
Google Scholar
[9]
S.V. Grib. A.G. Illarionov. A.A. Popov. O.M. Ivasishin, Development and investigation of the structure and physical and mechanical properties of low-modulus Ti-Zr-Nb alloys. The Phys. of Met. and Metallography. 115 (2014) 600-608.
DOI: 10.1134/s0031918x14030041
Google Scholar
[10]
P.P. Pal-Val. et. al., Unusual Young's modulus behavior in ultrafine-grained and microcrystalline copper wires caused by texture changes during processing and annealing. Mat. Sci. and Eng. A. 618 (2014) 9-15.
DOI: 10.1016/j.msea.2014.08.069
Google Scholar
[11]
H. Shen. H. Li. L.C. Brinson, Effect of microstructural configurations on the mechanical responses of porous titanium: A numerical design of experiment analysis for orthopedic applications. Mechanics of Materials. 40 (2008) 708-720.
DOI: 10.1016/j.mechmat.2008.03.009
Google Scholar
[12]
K.C. Nune. et al., Cellular response of osteoblasts to low modulus Ti-24Nb-4Zr-8Sn alloy mesh structure. J. of Biomedical Mat. Research - Part A. 105 (2017) 859-870.
DOI: 10.1002/jbm.a.35963
Google Scholar
[13]
V. Weißmann. R. Bader. H. Hansmann. N. Laufer, Influence of the structural orientation on the mechanical properties of selective laser melted Ti6Al4V open-porous scaffolds. Mat. and Design. 95 (2016) 188-197.
DOI: 10.1016/j.matdes.2016.01.095
Google Scholar
[14]
D.M. Dohan Ehrenfest. B.-S. Kang. Y.-T. Sul. T. Albrektsson. P.G. Coelho, Classification of osseointegrated implant surfaces: materials. chemistry and topography. Trends in Biotech. 28 (2010) 198-206.
DOI: 10.1016/j.tibtech.2009.12.003
Google Scholar
[15]
X. Pei et.al., Bionic mechanical design of titanium bone tissue implants and 3D printing manufacture. Mat. Let. 208 (2017) 133-137.
DOI: 10.1016/j.matlet.2017.04.128
Google Scholar
[16]
J. Krijger et. al., Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading. J. of the Mech. Behavior of Biomedical Mat. 70 (2017) 7-16.
DOI: 10.1016/j.jmbbm.2016.11.022
Google Scholar
[17]
ISO 13314 Mechanical testing of metals – Ductility testing - Compression test for porous and cellular metals. 1st edition (2011).
DOI: 10.3403/30203544
Google Scholar
[18]
Yu. Loginov. S.I. Stepanov. E.V. Khanykova, Effect of pore architecture of titanium implants on stress-strain state upon compression. Solid State Phenomena. 265 (2017) 606-610.
DOI: 10.4028/www.scientific.net/ssp.265.606
Google Scholar
[19]
Yu.N. Loginov. A.A. Popov. S.I. Stepanov. E.Yu. Kovalev, Compression test of porous implant produced of titanium alloy using additive technology. Titan. 2 (2017).
Google Scholar
[20]
G.I. Giannopoulos. D. Karagiannis. N.K. Anifantis, Micromechanical modeling of mechanical behavior of Ti-6Al-4V/TiB composites using FEM analysis. Comp. Mat. Sci. 39 (2007) 437-445.
DOI: 10.1016/j.commatsci.2006.07.010
Google Scholar
[21]
L. Videla. M. Cerrolaza. C. Gonzalez, 3D modeling. fem analysis and manufacturing of external fixators for human-bone fractures. Int. J. of Comp. Apps. in Tech. 15 (2002) 109.
DOI: 10.1504/ijcat.2002.000286
Google Scholar