Numeric Loading Simulation of Titanium Implant Manufactured Using 3D Printing

Article Preview

Abstract:

The problem of medical implants honeycomb structures loading has been stated. The problem was solved using simulation by the finite element method. Simulation revealed that it is possible to change the elastic modulus of the material more than three times with respect to the bulk titanium alloy. The quality of the simulation was estimated based on the convergence of the simulation data.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

380-385

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.Li. Jinshan, H. Kou, L. Zhou, Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications. Mat. Sci. and Eng.: C. 60 (2016) 485-488.

DOI: 10.1016/j.msec.2015.11.074

Google Scholar

[2] C. Matschegewski. et. al., Cell architecture-cell function dependencies on titanium arrays with regular geometry. Biomaterials. 31 (2010) 5729-5740.

DOI: 10.1016/j.biomaterials.2010.03.073

Google Scholar

[3] R. Bhola. F. Su. C.E. Krull, Functionalization of titanium based metallic biomaterials for implant applications. J. of Mat. Sci.: Mat. in Med. 22 (2011) 1147-1159.

DOI: 10.1007/s10856-011-4305-8

Google Scholar

[4] C.Wen. Y. Li, A newly developed biocompatible titanium alloy and its scaffolding by powder metallurgy. Key Eng. Mat. 520 (2012) 201-207.

DOI: 10.4028/www.scientific.net/kem.520.201

Google Scholar

[5] I. Tsukrov. J. Novak, Effective elastic properties of solids with defects of irregular shapes. Int. J. of Solids and Struct. 39 (2002) 1539-1555.

DOI: 10.1016/s0020-7683(01)00285-2

Google Scholar

[6] P. Majumdar. S.B. Singh. M. Chakraborty, Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques-a comparative study. Mat. Sci. and Eng.: A. 489 (2008) 419-425.

DOI: 10.1016/j.msea.2007.12.029

Google Scholar

[7] Ya. Song. R. Yang. D. Li. Zh. Hu. Zh. Guo, Calculation of bulk modulus of titanium alloys by first principles electronic structure theory. J. of Comp.-Aided Mat. Design. 6 (1999) 355-362.

Google Scholar

[8] A.A. Ershov. V.V. Kotov. Y.N. Loginov, Calculation of the compensation of a stamping tool after springback in the software package PAM-STAMP. Metallurgist. 56 (2012) 477-481.

DOI: 10.1007/s11015-012-9601-0

Google Scholar

[9] S.V. Grib. A.G. Illarionov. A.A. Popov. O.M. Ivasishin, Development and investigation of the structure and physical and mechanical properties of low-modulus Ti-Zr-Nb alloys. The Phys. of Met. and Metallography. 115 (2014) 600-608.

DOI: 10.1134/s0031918x14030041

Google Scholar

[10] P.P. Pal-Val. et. al., Unusual Young's modulus behavior in ultrafine-grained and microcrystalline copper wires caused by texture changes during processing and annealing. Mat. Sci. and Eng. A. 618 (2014) 9-15.

DOI: 10.1016/j.msea.2014.08.069

Google Scholar

[11] H. Shen. H. Li. L.C. Brinson, Effect of microstructural configurations on the mechanical responses of porous titanium: A numerical design of experiment analysis for orthopedic applications. Mechanics of Materials. 40 (2008) 708-720.

DOI: 10.1016/j.mechmat.2008.03.009

Google Scholar

[12] K.C. Nune. et al., Cellular response of osteoblasts to low modulus Ti-24Nb-4Zr-8Sn alloy mesh structure. J. of Biomedical Mat. Research - Part A. 105 (2017) 859-870.

DOI: 10.1002/jbm.a.35963

Google Scholar

[13] V. Weißmann. R. Bader. H. Hansmann. N. Laufer, Influence of the structural orientation on the mechanical properties of selective laser melted Ti6Al4V open-porous scaffolds. Mat. and Design. 95 (2016) 188-197.

DOI: 10.1016/j.matdes.2016.01.095

Google Scholar

[14] D.M. Dohan Ehrenfest. B.-S. Kang. Y.-T. Sul. T. Albrektsson. P.G. Coelho, Classification of osseointegrated implant surfaces: materials. chemistry and topography. Trends in Biotech. 28 (2010) 198-206.

DOI: 10.1016/j.tibtech.2009.12.003

Google Scholar

[15] X. Pei et.al., Bionic mechanical design of titanium bone tissue implants and 3D printing manufacture. Mat. Let. 208 (2017) 133-137.

DOI: 10.1016/j.matlet.2017.04.128

Google Scholar

[16] J. Krijger et. al., Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading. J. of the Mech. Behavior of Biomedical Mat. 70 (2017) 7-16.

DOI: 10.1016/j.jmbbm.2016.11.022

Google Scholar

[17] ISO 13314 Mechanical testing of metals – Ductility testing - Compression test for porous and cellular metals. 1st edition (2011).

DOI: 10.3403/30203544

Google Scholar

[18] Yu. Loginov. S.I. Stepanov. E.V. Khanykova, Effect of pore architecture of titanium implants on stress-strain state upon compression. Solid State Phenomena. 265 (2017) 606-610.

DOI: 10.4028/www.scientific.net/ssp.265.606

Google Scholar

[19] Yu.N. Loginov. A.A. Popov. S.I. Stepanov. E.Yu. Kovalev, Compression test of porous implant produced of titanium alloy using additive technology. Titan. 2 (2017).

Google Scholar

[20] G.I. Giannopoulos. D. Karagiannis. N.K. Anifantis, Micromechanical modeling of mechanical behavior of Ti-6Al-4V/TiB composites using FEM analysis. Comp. Mat. Sci. 39 (2007) 437-445.

DOI: 10.1016/j.commatsci.2006.07.010

Google Scholar

[21] L. Videla. M. Cerrolaza. C. Gonzalez, 3D modeling. fem analysis and manufacturing of external fixators for human-bone fractures. Int. J. of Comp. Apps. in Tech. 15 (2002) 109.

DOI: 10.1504/ijcat.2002.000286

Google Scholar