[1]
V.L. Kolmogorov, Mechanics of metal forming, Yekaterinburg: Publishing house of the Ural State Technical University, UPI, (2001).
Google Scholar
[2]
I.A. Birger, R.R. Mavljutov, Resistance of materials, Moscow: Nauka, (1986).
Google Scholar
[3]
V.V. Moskvitin, Plasticity under variable loading, Moscow: Publishing house of MGU, (1965).
Google Scholar
[4]
A. Nadai, Theory of flow and fracture of solids, Volume II, New York: McGraw-Hill Bool Company, Inc., (1963).
Google Scholar
[5]
Yu.N. Rabotnov, Resistance of materials, Moscow: Fizmatgiz, (1962).
Google Scholar
[6]
J.J. Jonas, F. Montheillet, L.S. Toth, C. Ghoh, Effects of varying twist and twist rate sensitivities on the interpretation of torsion testing data, Materials Science & Engineering, 591 (2014) 9-17.
DOI: 10.1016/j.msea.2013.10.069
Google Scholar
[7]
D.F. Fields, W.A. Backofen, Determination of strain-hardening characteristics by torsion testing, Proceedings of the 6th annual meeting of the society, ASTM Proceeding, 57 (1957) 1259-1272.
Google Scholar
[8]
S. Khoddam, P.D. Hodgson, Post processing of the hot torsion test results using a multi-dimensional modelling approach, Materials & design, 31(5) (2010) 2578-2584.
DOI: 10.1016/j.matdes.2009.11.029
Google Scholar
[9]
E. Hadasik, I. Schindler, Plasticity of metallic materials, Gliwice: Publishers of Silesian University, Poland, (2004).
Google Scholar
[10]
T. Sheppard, D.S. Wright, Determination of flow stress: Part 1. Constitutive equation for aluminum alloys at elevated temperatures, Metals Technology, 6 (1979) 215-223.
DOI: 10.1179/030716979803276264
Google Scholar
[11]
G.R. Gonova, S. Shrivastava, J.J. Jonas, Use of torsion testing to assess material formability, Formability of Metallic Materials-2000 AD: Chicago; 1980. – Philadelphia: ASTM STP 753, (1982) 189-210.
DOI: 10.1520/stp28395s
Google Scholar
[12]
E. Lach, K. Pöhlandt, Testing the plastic behavior of metals by torsion of solid and tubular specimens, Journal of Mechanical Working Technology, 9 (1984) 67-80.
DOI: 10.1016/0378-3804(84)90094-9
Google Scholar
[13]
M. Knorr, A. Graber, K. Pohlandt, A new approach the evaluation of high strain flow curve data using the hot torsion test, Trans NAMRI/SME, (1990) 52-58.
Google Scholar
[14]
J.J. Jonas, C. Ghosh, L.S. Toth, The equivalent strain in high pressure torsion, Materials Science & Engineering, 607 (2014) 530-535.
DOI: 10.1016/j.msea.2014.04.046
Google Scholar
[15]
S. Onaka, Comment on «A comparison of the von Mises and Hencky equivalent strains for use in simple shear experiments», Philosophical Magazine, 92(18) (2012) 2264-2271.
DOI: 10.1080/14786435.2012.671551
Google Scholar
[16]
K. Laber, A. Kawalek, S. Sawicki, H. Dyja, Application of torsion test for determination of rheological properties of 5019 aluminium alloy, Key Engineering Materials, 682 (2016) 356-361.
DOI: 10.4028/www.scientific.net/kem.682.356
Google Scholar