[1]
K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, J.P. Kruth, Process Optimization and micostructural analysis for Selective Laser Melting of AlSi10Mg, Solid Free. Fabr. (2001) 484-495.
Google Scholar
[2]
H. Wang, B. Zhao, C. Liu, C. Wang, X. Tan, M. Hu, A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting, PLoS One. 11 (2016).
DOI: 10.1371/journal.pone.0158513
Google Scholar
[3]
R. Wauthle, J. van der Stok, S. Amin Yavari, J. Van Humbeeck, J.-P. Kruth, A.A. Zadpoor, H. Weinans, M. Mulier, J. Schrooten, Additively manufactured porous tantalum implants, Acta Biomater. 14 (2015) 217-225.
DOI: 10.1016/j.actbio.2014.12.003
Google Scholar
[4]
D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev. 57 (2012) 133-164.
DOI: 10.1179/1743280411y.0000000014
Google Scholar
[5]
S.M. Wagner, R.O. Walton, Additive manufacturing's impact and future in the aviation industry, Prod. Plan. Control. 27 (2016) 1124-1130.
Google Scholar
[6]
E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, A.V. Borille, Additive Manufacturing of Titanium Alloy for Aircraft Components, Procedia CIRP. 35 (2015) 55-60.
DOI: 10.1016/j.procir.2015.08.061
Google Scholar
[7]
R. Boyer, G. Welsch, E.V. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, (1994).
Google Scholar
[8]
B. Zhao, H. Wang, N. Qiao, C. Wang, M. Hu, Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo, Mater. Sci. Eng. C. 70 (2017) 832-841.
DOI: 10.1016/j.msec.2016.07.045
Google Scholar
[9]
B.B. Song, S. Dong, H. Liao, C. Coddet, Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering, Int. J. Adv. Manuf. Technol. 61 (2012) 967-974.
DOI: 10.1007/s00170-011-3776-6
Google Scholar
[10]
L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, J.P. Kruth, A study of the microstructural evolution during selective laser melting of Ti-6Al-4V, Acta Mater. 58 (2010) 3303-3312.
DOI: 10.1016/j.actamat.2010.02.004
Google Scholar
[11]
J. Sun, Y. Yang, D. Wang, Mechanical properties of Ti-6Al-4V octahedral porous material unit formed by selective laser melting, Adv. Mech. Eng. (2012).
DOI: 10.1155/2012/427386
Google Scholar
[12]
B. Van Hooreweder, D. Moens, R. Boonen, J.-P. Kruth, P. Sas, Analysis of Fracture Toughness and Crack Propagation of Ti6Al4V Produced by Selective Laser Melting, Adv. Eng. Mater. 14 (2012) 92-97.
DOI: 10.1002/adem.201100233
Google Scholar
[13]
S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, H.J. Maier, On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance, Int. J. Fatigue. 48 (2013).
DOI: 10.1016/j.ijfatigue.2012.11.011
Google Scholar
[14]
H.X. Li, B.Y. Huang, F. Sun, S.L. Gong, Microstructure and Tensile Properties of Ti-6Al-4V Alloys Fabricated by Selective Laser Melting, Rare Met. Mater. Eng. 42 (2013) 209-212.
Google Scholar
[15]
J. Sun, Y. Yang, D. Wang, Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method, Opt. Laser Technol. 49 (2013) 118-124.
DOI: 10.1016/j.optlastec.2012.12.002
Google Scholar
[16]
H. Gong, K. Rafi, H. Gu, T. Starr, B. Stucker, Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes, Addit. Manuf. 1 (2014) 87-98.
DOI: 10.1016/j.addma.2014.08.002
Google Scholar
[17]
F. Bartolomeu, S. Faria, O. Carvalho, E. Pinto, N. Alves, F.S. Silva, G. Miranda, Predictive models for physical and mechanical properties of Ti6Al4V produced by Selective Laser Melting, Mater. Sci. Eng. A. 663 (2016) 181-192.
DOI: 10.1016/j.msea.2016.03.113
Google Scholar
[18]
J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting, Mater. Des. 108 (2016) 308-318.
DOI: 10.1016/j.matdes.2016.06.117
Google Scholar
[19]
A. Bandyopadhyay, F. Espana, V.K. Balla, S. Bose, Y. Ohgami, N.M. Davies, Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants, Acta Biomater. 6 (2010) 1640-1648.
DOI: 10.1016/j.actbio.2009.11.011
Google Scholar
[20]
L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, R.B. Wicker, Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications, J. Mech. Behav. Biomed. Mater. 2 (2009).
DOI: 10.1016/j.jmbbm.2008.05.004
Google Scholar
[21]
L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Höges, K. Wissenbach, Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders, Rapid Prototyp. J. 16 (2010) 450-459.
DOI: 10.1108/13552541011083371
Google Scholar
[22]
C.R. Knowles, T.H. Becker, R.B. Tait, Residual stress measurements and structural integrity implications for selective laser melted Ti-6Al-4V, South African J. Ind. Eng. 23 (2012) 119-129.
DOI: 10.7166/23-3-515
Google Scholar
[23]
B. Vrancken, L. Thijs, J.-P. Kruth, J. Van Humbeeck, Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties, J. Alloys Compd. 541 (2012) 177-185.
DOI: 10.1016/j.jallcom.2012.07.022
Google Scholar
[24]
G.A. Longhitano, M.A. Larosa, A.L. Jardini, C.A.D.C. Zavaglia, M.C.F. Ierardi, Correlation between microstructures and mechanical properties under tensile and compression tests of heat-treated Ti-6Al-4V ELI alloy produced by additive manufacturing for biomedical applications, J. Mater. Process. Technol. 252 (2018).
DOI: 10.1016/j.jmatprotec.2017.09.022
Google Scholar
[25]
Information on http://www.3dsystems.com/products/datafiles/sinterstation_pro_slm/ SinterstationPro_DM125_DM250_SLMSystem.pdf, (n.d.).
Google Scholar
[26]
R.M. Baitimerov, P.A. Lykov, L.V. Radionova, E.V. Safonov, Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser, IOP Conf. Ser. Mater. Sci. Eng. 248 (2017).
DOI: 10.1088/1757-899x/248/1/012012
Google Scholar
[27]
T. Vilaro, C. Colin, J.D. Bartout, As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42 (2011) 3190-3199.
DOI: 10.1007/s11661-011-0731-y
Google Scholar
[28]
R.M. Baitimerov, P.A. Lykov, L.V. Radionova, A.M. Akhmedianov, S.P. Samoilov, An investigation of high temperature tensile properties of selective laser melted ti-6al-4v, Proc. 3rd Int. Conf. Prog. Addit. Manuf. (2018) 439-444.
Google Scholar
[29]
W. Sha, S. Malinov, Titanium alloys: modelling of microstructure, properties and applications, Woodhead Publishing Ltd, Cambridge, (2009).
Google Scholar