Influence of Heat Treatment on Microstructure and Mechanical Properties of Selective Laser Melted TiAl6V4 Alloy

Article Preview

Abstract:

TiAl6V4 titanium base alloy is widely used in aerospace and medical industries. Specimens for tensile tests from TiAl6V4 with porosity less than 0.5% was fabricated by selective laser melting (SLM). Specimens were treated using two heat treatment procedures, third batch of specimens was tested in as-fabricated statement after machining. Tensile tests were carried out at room temperature. Microstructure and mechanical properties of SLM fabricated TiAl6V4 after different heat treatments were investigated.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

615-620

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, J.P. Kruth, Process Optimization and micostructural analysis for Selective Laser Melting of AlSi10Mg, Solid Free. Fabr. (2001) 484-495.

Google Scholar

[2] H. Wang, B. Zhao, C. Liu, C. Wang, X. Tan, M. Hu, A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting, PLoS One. 11 (2016).

DOI: 10.1371/journal.pone.0158513

Google Scholar

[3] R. Wauthle, J. van der Stok, S. Amin Yavari, J. Van Humbeeck, J.-P. Kruth, A.A. Zadpoor, H. Weinans, M. Mulier, J. Schrooten, Additively manufactured porous tantalum implants, Acta Biomater. 14 (2015) 217-225.

DOI: 10.1016/j.actbio.2014.12.003

Google Scholar

[4] D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev. 57 (2012) 133-164.

DOI: 10.1179/1743280411y.0000000014

Google Scholar

[5] S.M. Wagner, R.O. Walton, Additive manufacturing's impact and future in the aviation industry, Prod. Plan. Control. 27 (2016) 1124-1130.

Google Scholar

[6] E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, A.V. Borille, Additive Manufacturing of Titanium Alloy for Aircraft Components, Procedia CIRP. 35 (2015) 55-60.

DOI: 10.1016/j.procir.2015.08.061

Google Scholar

[7] R. Boyer, G. Welsch, E.V. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, (1994).

Google Scholar

[8] B. Zhao, H. Wang, N. Qiao, C. Wang, M. Hu, Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo, Mater. Sci. Eng. C. 70 (2017) 832-841.

DOI: 10.1016/j.msec.2016.07.045

Google Scholar

[9] B.B. Song, S. Dong, H. Liao, C. Coddet, Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering, Int. J. Adv. Manuf. Technol. 61 (2012) 967-974.

DOI: 10.1007/s00170-011-3776-6

Google Scholar

[10] L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, J.P. Kruth, A study of the microstructural evolution during selective laser melting of Ti-6Al-4V, Acta Mater. 58 (2010) 3303-3312.

DOI: 10.1016/j.actamat.2010.02.004

Google Scholar

[11] J. Sun, Y. Yang, D. Wang, Mechanical properties of Ti-6Al-4V octahedral porous material unit formed by selective laser melting, Adv. Mech. Eng. (2012).

DOI: 10.1155/2012/427386

Google Scholar

[12] B. Van Hooreweder, D. Moens, R. Boonen, J.-P. Kruth, P. Sas, Analysis of Fracture Toughness and Crack Propagation of Ti6Al4V Produced by Selective Laser Melting, Adv. Eng. Mater. 14 (2012) 92-97.

DOI: 10.1002/adem.201100233

Google Scholar

[13] S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, H.J. Maier, On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance, Int. J. Fatigue. 48 (2013).

DOI: 10.1016/j.ijfatigue.2012.11.011

Google Scholar

[14] H.X. Li, B.Y. Huang, F. Sun, S.L. Gong, Microstructure and Tensile Properties of Ti-6Al-4V Alloys Fabricated by Selective Laser Melting, Rare Met. Mater. Eng. 42 (2013) 209-212.

Google Scholar

[15] J. Sun, Y. Yang, D. Wang, Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method, Opt. Laser Technol. 49 (2013) 118-124.

DOI: 10.1016/j.optlastec.2012.12.002

Google Scholar

[16] H. Gong, K. Rafi, H. Gu, T. Starr, B. Stucker, Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes, Addit. Manuf. 1 (2014) 87-98.

DOI: 10.1016/j.addma.2014.08.002

Google Scholar

[17] F. Bartolomeu, S. Faria, O. Carvalho, E. Pinto, N. Alves, F.S. Silva, G. Miranda, Predictive models for physical and mechanical properties of Ti6Al4V produced by Selective Laser Melting, Mater. Sci. Eng. A. 663 (2016) 181-192.

DOI: 10.1016/j.msea.2016.03.113

Google Scholar

[18] J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting, Mater. Des. 108 (2016) 308-318.

DOI: 10.1016/j.matdes.2016.06.117

Google Scholar

[19] A. Bandyopadhyay, F. Espana, V.K. Balla, S. Bose, Y. Ohgami, N.M. Davies, Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants, Acta Biomater. 6 (2010) 1640-1648.

DOI: 10.1016/j.actbio.2009.11.011

Google Scholar

[20] L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, R.B. Wicker, Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications, J. Mech. Behav. Biomed. Mater. 2 (2009).

DOI: 10.1016/j.jmbbm.2008.05.004

Google Scholar

[21] L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Höges, K. Wissenbach, Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders, Rapid Prototyp. J. 16 (2010) 450-459.

DOI: 10.1108/13552541011083371

Google Scholar

[22] C.R. Knowles, T.H. Becker, R.B. Tait, Residual stress measurements and structural integrity implications for selective laser melted Ti-6Al-4V, South African J. Ind. Eng. 23 (2012) 119-129.

DOI: 10.7166/23-3-515

Google Scholar

[23] B. Vrancken, L. Thijs, J.-P. Kruth, J. Van Humbeeck, Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties, J. Alloys Compd. 541 (2012) 177-185.

DOI: 10.1016/j.jallcom.2012.07.022

Google Scholar

[24] G.A. Longhitano, M.A. Larosa, A.L. Jardini, C.A.D.C. Zavaglia, M.C.F. Ierardi, Correlation between microstructures and mechanical properties under tensile and compression tests of heat-treated Ti-6Al-4V ELI alloy produced by additive manufacturing for biomedical applications, J. Mater. Process. Technol. 252 (2018).

DOI: 10.1016/j.jmatprotec.2017.09.022

Google Scholar

[25] Information on http://www.3dsystems.com/products/datafiles/sinterstation_pro_slm/ SinterstationPro_DM125_DM250_SLMSystem.pdf, (n.d.).

Google Scholar

[26] R.M. Baitimerov, P.A. Lykov, L.V. Radionova, E.V. Safonov, Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser, IOP Conf. Ser. Mater. Sci. Eng. 248 (2017).

DOI: 10.1088/1757-899x/248/1/012012

Google Scholar

[27] T. Vilaro, C. Colin, J.D. Bartout, As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42 (2011) 3190-3199.

DOI: 10.1007/s11661-011-0731-y

Google Scholar

[28] R.M. Baitimerov, P.A. Lykov, L.V. Radionova, A.M. Akhmedianov, S.P. Samoilov, An investigation of high temperature tensile properties of selective laser melted ti-6al-4v, Proc. 3rd Int. Conf. Prog. Addit. Manuf. (2018) 439-444.

Google Scholar

[29] W. Sha, S. Malinov, Titanium alloys: modelling of microstructure, properties and applications, Woodhead Publishing Ltd, Cambridge, (2009).

Google Scholar