[1]
M.P. Seah, Adsorption-induced interface decohesion, Acta Metallurgica, 28 (1980) 955-962.
DOI: 10.1016/0001-6160(80)90112-1
Google Scholar
[2]
A. Preece, R.D. Carter, Temper-brittleness in high-purity iron-base alloys, Journal of the Iron and Steel Institute, 173 (1953) 387.
Google Scholar
[3]
H. Kaneko, T. Nishizawa, K. Tamaki, A. Tanifuji, Solubility of phosphorus in α and γ iron, J. Japan Inst. Metals, 29 (1965) 166-170.
Google Scholar
[4]
H. Erhart, H.J. Grabke, Equilibrium segregation of phosphorus at grain boundaries of Fe–P, Fe–C–P, Fe–Cr–P, and Fe–Cr–C–P alloys, Metal Science, 15 (1981) 401-408.
DOI: 10.1179/030634581790426877
Google Scholar
[5]
C. Liu, K. Abiko, M. Tanino, Role of chromium in the intergranular fracture of high purity Fe-P-Cr alloys with small amounts of carbon, Materials Science and Engineering A, 176 (1994) 363-369.
DOI: 10.1016/0921-5093(94)91000-6
Google Scholar
[6]
S. Suzuki, M. Obata, K. Abiko, H. Kimura, Effect of carbon on the grain boundary segregation of phosphorus in α-iron, Scripta Metallurgica, 17 (1983) 1325-1328.
DOI: 10.1016/0036-9748(83)90225-9
Google Scholar
[7]
P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Physical Review, 136 (1964) B864.
DOI: 10.1103/physrev.136.b864
Google Scholar
[8]
D.G. Pettifor, Electron theory in materials modeling, Acta Materialia, 51 (2003) 5649-5673.
DOI: 10.1016/s1359-6454(03)00466-x
Google Scholar
[9]
K. Schwarz, P. Blaha, Solid state calculations using WIEN2k, Computational Materials Science, 28 (2003) 259-273.
DOI: 10.1016/s0927-0256(03)00112-5
Google Scholar
[10]
D.A. Mirzaev, A.A. Mirzoev, K.Y. Okishev, A.V. Verkhovykh, Hydrogen-vacancy interaction in bcc iron: ab initio calculations and thermodynamics, Molecular Physics, 112 (2013) 1745-1754.
DOI: 10.1080/00268976.2013.861087
Google Scholar
[11]
A. Ludsteck, Bestimmung der Änderung der Gitterkonstanten und des anisotropen Debye–Waller-Faktors von Graphit mittels Neutronenbeugung im Temperaturbereich von 25 bis 1850°C, Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 28 (1972).
DOI: 10.1107/s0567739472000130
Google Scholar
[12]
G. Kern, J. Hafner, Ab initio molecular-dynamics studies of the graphitization of flat and stepped diamond (111) surfaces, Physical Review B, 58 (1998) 13167.
DOI: 10.1103/physrevb.58.13167
Google Scholar
[13]
D.H. Jack, K.H. Jack, Invited review: carbides and nitrides in steel, Materials Science and Engineering, 11 (1973) 1-27.
DOI: 10.1016/0025-5416(73)90055-4
Google Scholar
[14]
E. Hristova, R. Janisch, R. Drautz, A. Hartmaier, Solubility of carbon in α-iron under volumetric strain and close to the Σ5 (310).
DOI: 10.1016/j.commatsci.2010.11.006
Google Scholar
[15]
N. Hatcher, G.K.H. Madsen, R. Drautz, DFT-based tight-binding modeling of iron-carbon, Physical Review B, 86 (2012) 155115.
DOI: 10.1103/physrevb.86.155115
Google Scholar
[1]
grain boundary: Comparison of DFT and empirical potential methods, Computational Materials Science, 50 (2011) 1088-1096.
Google Scholar
[16]
D.E. Jiang, E.A. Carter, Carbon dissolution and diffusion in ferrite and austenite from first principles, Physical Review B, 67 (2003) 214103.
DOI: 10.1103/physrevb.67.214103
Google Scholar
[17]
E. Schlirmann, T. Schmidt, F. Tillmann, Carburisation equilibria of alpha-iron with methane-hydrogen mixtures in the 600–800 C range, Giesserei-Forschung, 19 (1967) 1, 35-41.
Google Scholar
[18]
L. Cartz, S.R. Srinivasa, R.J. Riedner, J.D. Jorgensen, T.G. Worlton, Effect of pressure on bonding in black phosphorus, The Journal of Chemical Physics, 71 (1979) 1718-1721.
DOI: 10.1063/1.438523
Google Scholar
[19]
W.-S. Ko, N.J. Kim, B.-J. Lee, Atomistic modeling of an impurity element and a metal-impurity system: pure P and Fe–P system, Journal of Physics: Condensed Matter, 24 (2012) 225002.
DOI: 10.1088/0953-8984/24/22/225002
Google Scholar
[20]
F.J.H. Ehlers, N.E. Christensen, Phosphorus under pressure: Ba-IV-type structure as a candidate for P-IV, Physical Review B, 69 (2004) 214112.
DOI: 10.1103/physrevb.69.214112
Google Scholar
[21]
Y.-W.You, X.-Sh. Kong, X.-B. Wu, W. Liu, Q.F. Fang, J.L. Chen, G.-N. Luo, Zh. Wang, Interactions of solute (3p, 4p, 5p and 6p) with solute, vacancy and divacancy in bcc Fe, Journal of Nuclear Materials, 455 (2014) 68-72.
DOI: 10.1016/j.jnucmat.2014.04.014
Google Scholar
[22]
C. Domain, C.S. Becquart, Diffusion of phosphorus in α-Fe: An ab initio study, Physical Review B, 71 (2005) 214109.
Google Scholar
[23]
R.W.G. Wyckoff, Crystal Structures, Vol. 1, American Mineralogist Crystal Structure Database, (1963).
Google Scholar
[24]
O.I. Gorbatov, S.V. Okatov, Yu.N. Gornostyrev, P.A. Korzhavyi, A.V. Ruban, Effect of magnetism on the solubility of 3d elements in BCC iron: Results of first-principle investigations, The Physics of Metals and Metallography, 114 (2013) 642-653.
DOI: 10.1134/s0031918x13080036
Google Scholar
[25]
P. Olsson, T.P.C. Klaver, C. Domain, Ab initio study of solute transition-metal interactions with point defects in bcc Fe, Physical Review B, 81 (2010) 054102.
DOI: 10.1103/physrevb.81.054102
Google Scholar
[26]
M.F. Collins, G.G. Low, The magnetic moment distribution around transition element impurities in iron and nickel, Proceedings of the Physical Society, 86 (1965) 535.
DOI: 10.1088/0370-1328/86/3/313
Google Scholar
[27]
H.R. Child, J.W. Cable, Temperature dependence of the magnetic-moment distribution around impurities in iron, Physical Review B, 13 (1976) 227.
DOI: 10.1103/physrevb.13.227
Google Scholar
[28]
A.A. Mirzoev, M.M. Yalalov, D.A. Mirzaev, Energy of mixing and magnetic state of components of Fe–Mn alloys: A first-principles calculation for the ground state, The Physics of Metals and Metallography, 101 (2006) 341-348.
DOI: 10.1134/s0031918x06040065
Google Scholar
[29]
P. Olsson, C. Domain, J. Wallenius, Ab initio study of Cr interactions with point defects in bcc Fe, Physical Review B, 75 (2007) 014110.
DOI: 10.1103/physrevb.75.014110
Google Scholar
[30]
R. Soulairol, Ch.-Ch. Fu, C. Barreteau, Structure and magnetism of bulk Fe and Cr: from plane waves to LCAO methods, Journal of Physics: Condensed Matter, 22 (2010) 295502.
DOI: 10.1088/0953-8984/22/29/295502
Google Scholar
[31]
T.P.C. Klaver, R. Drautz, M.W. Finnis, Magnetism and thermodynamics of defect-free Fe–Cr alloys, Physical Review B, 74 (2006) 094435.
DOI: 10.1103/physrevb.74.094435
Google Scholar
[32]
Vincent E., Becquart C.S., Domain C. Solute interaction with point defects in α Fe during thermal ageing: A combined ab initio and atomic kinetic Monte Carlo approach, Journal of Nuclear Materials, 351 (2006) 88-99.
DOI: 10.1016/j.jnucmat.2006.02.018
Google Scholar
[33]
O.I. Gorbatov, A. Hosseinzadeh Delandar, Yu.N. Gornostyrev, A.V. Ruban, P.A. Korzhavyi, First-principles study of interactions between substitutional solutes in bcc iron, Journal of Nuclear Materials, 475 (2016) 140-148.
DOI: 10.1016/j.jnucmat.2016.04.013
Google Scholar