Interaction of Phosphorus with Impurity Atoms in BCC Iron

Article Preview

Abstract:

The paper presents the results of modelling of phosphorus interaction with substitutional (Cr, Mn, P) and interstitial (C) impurity atoms in bcc iron in the framework of density functional theory using WIEN2k software. It is found that a repulsion exists of a phosphorus atom in the three first spheres of coordination of carbon, chromium and phosphorus atoms, while for manganese such repulsion of phosphorus takes place only in the second sphere. This repulsion is a consequence of an abrupt change of magnetic moment of manganese atom, so the solution energy of phosphorus almost does not change. On the contrary, chromium decreases phosphorus solubility in iron, in agreement with other data.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

627-633

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.P. Seah, Adsorption-induced interface decohesion, Acta Metallurgica, 28 (1980) 955-962.

DOI: 10.1016/0001-6160(80)90112-1

Google Scholar

[2] A. Preece, R.D. Carter, Temper-brittleness in high-purity iron-base alloys, Journal of the Iron and Steel Institute, 173 (1953) 387.

Google Scholar

[3] H. Kaneko, T. Nishizawa, K. Tamaki, A. Tanifuji, Solubility of phosphorus in α and γ iron, J. Japan Inst. Metals, 29 (1965) 166-170.

Google Scholar

[4] H. Erhart, H.J. Grabke, Equilibrium segregation of phosphorus at grain boundaries of Fe–P, Fe–C–P, Fe–Cr–P, and Fe–Cr–C–P alloys, Metal Science, 15 (1981) 401-408.

DOI: 10.1179/030634581790426877

Google Scholar

[5] C. Liu, K. Abiko, M. Tanino, Role of chromium in the intergranular fracture of high purity Fe-P-Cr alloys with small amounts of carbon, Materials Science and Engineering A, 176 (1994) 363-369.

DOI: 10.1016/0921-5093(94)91000-6

Google Scholar

[6] S. Suzuki, M. Obata, K. Abiko, H. Kimura, Effect of carbon on the grain boundary segregation of phosphorus in α-iron, Scripta Metallurgica, 17 (1983) 1325-1328.

DOI: 10.1016/0036-9748(83)90225-9

Google Scholar

[7] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Physical Review, 136 (1964) B864.

DOI: 10.1103/physrev.136.b864

Google Scholar

[8] D.G. Pettifor, Electron theory in materials modeling, Acta Materialia, 51 (2003) 5649-5673.

DOI: 10.1016/s1359-6454(03)00466-x

Google Scholar

[9] K. Schwarz, P. Blaha, Solid state calculations using WIEN2k, Computational Materials Science, 28 (2003) 259-273.

DOI: 10.1016/s0927-0256(03)00112-5

Google Scholar

[10] D.A. Mirzaev, A.A. Mirzoev, K.Y. Okishev, A.V. Verkhovykh, Hydrogen-vacancy interaction in bcc iron: ab initio calculations and thermodynamics, Molecular Physics, 112 (2013) 1745-1754.

DOI: 10.1080/00268976.2013.861087

Google Scholar

[11] A. Ludsteck, Bestimmung der Änderung der Gitterkonstanten und des anisotropen Debye–Waller-Faktors von Graphit mittels Neutronenbeugung im Temperaturbereich von 25 bis 1850°C, Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 28 (1972).

DOI: 10.1107/s0567739472000130

Google Scholar

[12] G. Kern, J. Hafner, Ab initio molecular-dynamics studies of the graphitization of flat and stepped diamond (111) surfaces, Physical Review B, 58 (1998) 13167.

DOI: 10.1103/physrevb.58.13167

Google Scholar

[13] D.H. Jack, K.H. Jack, Invited review: carbides and nitrides in steel, Materials Science and Engineering, 11 (1973) 1-27.

DOI: 10.1016/0025-5416(73)90055-4

Google Scholar

[14] E. Hristova, R. Janisch, R. Drautz, A. Hartmaier, Solubility of carbon in α-iron under volumetric strain and close to the Σ5 (310).

DOI: 10.1016/j.commatsci.2010.11.006

Google Scholar

[15] N. Hatcher, G.K.H. Madsen, R. Drautz, DFT-based tight-binding modeling of iron-carbon, Physical Review B, 86 (2012) 155115.

DOI: 10.1103/physrevb.86.155115

Google Scholar

[1] grain boundary: Comparison of DFT and empirical potential methods, Computational Materials Science, 50 (2011) 1088-1096.

Google Scholar

[16] D.E. Jiang, E.A. Carter, Carbon dissolution and diffusion in ferrite and austenite from first principles, Physical Review B, 67 (2003) 214103.

DOI: 10.1103/physrevb.67.214103

Google Scholar

[17] E. Schlirmann, T. Schmidt, F. Tillmann, Carburisation equilibria of alpha-iron with methane-hydrogen mixtures in the 600–800 C range, Giesserei-Forschung, 19 (1967) 1, 35-41.

Google Scholar

[18] L. Cartz, S.R. Srinivasa, R.J. Riedner, J.D. Jorgensen, T.G. Worlton, Effect of pressure on bonding in black phosphorus, The Journal of Chemical Physics, 71 (1979) 1718-1721.

DOI: 10.1063/1.438523

Google Scholar

[19] W.-S. Ko, N.J. Kim, B.-J. Lee, Atomistic modeling of an impurity element and a metal-impurity system: pure P and Fe–P system, Journal of Physics: Condensed Matter, 24 (2012) 225002.

DOI: 10.1088/0953-8984/24/22/225002

Google Scholar

[20] F.J.H. Ehlers, N.E. Christensen, Phosphorus under pressure: Ba-IV-type structure as a candidate for P-IV, Physical Review B, 69 (2004) 214112.

DOI: 10.1103/physrevb.69.214112

Google Scholar

[21] Y.-W.You, X.-Sh. Kong, X.-B. Wu, W. Liu, Q.F. Fang, J.L. Chen, G.-N. Luo, Zh. Wang, Interactions of solute (3p, 4p, 5p and 6p) with solute, vacancy and divacancy in bcc Fe, Journal of Nuclear Materials, 455 (2014) 68-72.

DOI: 10.1016/j.jnucmat.2014.04.014

Google Scholar

[22] C. Domain, C.S. Becquart, Diffusion of phosphorus in α-Fe: An ab initio study, Physical Review B, 71 (2005) 214109.

Google Scholar

[23] R.W.G. Wyckoff, Crystal Structures, Vol. 1, American Mineralogist Crystal Structure Database, (1963).

Google Scholar

[24] O.I. Gorbatov, S.V. Okatov, Yu.N. Gornostyrev, P.A. Korzhavyi, A.V. Ruban, Effect of magnetism on the solubility of 3d elements in BCC iron: Results of first-principle investigations, The Physics of Metals and Metallography, 114 (2013) 642-653.

DOI: 10.1134/s0031918x13080036

Google Scholar

[25] P. Olsson, T.P.C. Klaver, C. Domain, Ab initio study of solute transition-metal interactions with point defects in bcc Fe, Physical Review B, 81 (2010) 054102.

DOI: 10.1103/physrevb.81.054102

Google Scholar

[26] M.F. Collins, G.G. Low, The magnetic moment distribution around transition element impurities in iron and nickel, Proceedings of the Physical Society, 86 (1965) 535.

DOI: 10.1088/0370-1328/86/3/313

Google Scholar

[27] H.R. Child, J.W. Cable, Temperature dependence of the magnetic-moment distribution around impurities in iron, Physical Review B, 13 (1976) 227.

DOI: 10.1103/physrevb.13.227

Google Scholar

[28] A.A. Mirzoev, M.M. Yalalov, D.A. Mirzaev, Energy of mixing and magnetic state of components of Fe–Mn alloys: A first-principles calculation for the ground state, The Physics of Metals and Metallography, 101 (2006) 341-348.

DOI: 10.1134/s0031918x06040065

Google Scholar

[29] P. Olsson, C. Domain, J. Wallenius, Ab initio study of Cr interactions with point defects in bcc Fe, Physical Review B, 75 (2007) 014110.

DOI: 10.1103/physrevb.75.014110

Google Scholar

[30] R. Soulairol, Ch.-Ch. Fu, C. Barreteau, Structure and magnetism of bulk Fe and Cr: from plane waves to LCAO methods, Journal of Physics: Condensed Matter, 22 (2010) 295502.

DOI: 10.1088/0953-8984/22/29/295502

Google Scholar

[31] T.P.C. Klaver, R. Drautz, M.W. Finnis, Magnetism and thermodynamics of defect-free Fe–Cr alloys, Physical Review B, 74 (2006) 094435.

DOI: 10.1103/physrevb.74.094435

Google Scholar

[32] Vincent E., Becquart C.S., Domain C. Solute interaction with point defects in α Fe during thermal ageing: A combined ab initio and atomic kinetic Monte Carlo approach, Journal of Nuclear Materials, 351 (2006) 88-99.

DOI: 10.1016/j.jnucmat.2006.02.018

Google Scholar

[33] O.I. Gorbatov, A. Hosseinzadeh Delandar, Yu.N. Gornostyrev, A.V. Ruban, P.A. Korzhavyi, First-principles study of interactions between substitutional solutes in bcc iron, Journal of Nuclear Materials, 475 (2016) 140-148.

DOI: 10.1016/j.jnucmat.2016.04.013

Google Scholar