[1]
I.I. Tsypin, White Wear-Resistant Cast Irons: Structure and Properties, Metallurgiya Publ., Moscow, (1983).
Google Scholar
[2]
A.A. Zhukov, G.I. Sil'man, M.S. Frol'tsov, Wear-Resistant Castings of Complex Alloy White Cast Irons, Mashinostroenie Publ., Moscow, (1984).
Google Scholar
[3]
D.A. Mirzaev, N.M. Mirzaeva, A.N. Emelyushin, Ledeburite alloys for tools for machining of graphite, Metal Science and Heat Treatment, 30 (1988) 519-523.
DOI: 10.1007/bf00777442
Google Scholar
[4]
A.N. Emelyushin, D.A. Mirzaev, N.M. Mirzaeva, E.V. Petrochenko, K.Yu. Okishev, O.S. Molochkova, Cast Tools of Chromium Cast Irons. Structure and Properties. MGTU Publ., Magnitogorsk, (2016).
Google Scholar
[5]
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (1996) 11169-11186.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[6]
D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B. 41 (1990) 7892-7895.
DOI: 10.1103/physrevb.41.7892
Google Scholar
[7]
J.P. Perdew, M. Ernzerhof, K. Burke, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[8]
J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B. 23 (1981) 5048-5079.
DOI: 10.1103/physrevb.23.5048
Google Scholar
[9]
H. Monkhorst, J. Pack, Special points for Brillouin zone integrations, Phys. Rev. B. 13 (1976) 5188-5192.
DOI: 10.1103/physrevb.13.5188
Google Scholar
[10]
A. Tkatchenko, M. Scheffler, Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data, Phys. Rev. Lett. 102 (2009) 73005.
DOI: 10.1103/physrevlett.102.073005
Google Scholar
[11]
Information on http://materials.springer.com/isp/crystallographic/docs/sd_0313352.
Google Scholar
[12]
Information on http://materials.springer.com/isp/crystallographic/docs/sd_1011336.
Google Scholar
[13]
M.A. Konyaeva, N.I. Medvedeva, Electronic structure, magnetic properties, and stability of the binary and ternary carbides (Fe,Cr)3C and (Fe,Cr)7C3, Phys. Solid State. 51 (2009) 2084-(2089).
DOI: 10.1134/s1063783409100151
Google Scholar
[14]
Information on http://kth.diva-portal.org/smash/record.jsf?pid=diva2:642410&dswid=-3363.
Google Scholar
[15]
B. Xiao, J. Feng, C.T. Zhou, J.D. Xing, X.J. Xie, Y.H. Chen, First principles study on the electronic structures and stability of Cr7C3 type multi-component carbides, Chem. Phys. Lett. 459 (2008) 129-132.
DOI: 10.1016/j.cplett.2008.05.072
Google Scholar
[16]
M. Small, E. Ryba, Calculation and evaluation of the Gibbs energies of formation of Cr3C2, Cr7C3, and Cr23C6, Metall. Trans. A. 12 (1981) 1389-1396.
DOI: 10.1007/bf02643683
Google Scholar
[17]
C.M. Fang, M.A. van Huis, H.W. Zandbergen, Structural, electronic, and magnetic properties of iron carbide Fe7C3 phases from first-principles theory, Phys. Rev. B. 80 (2009) 224108.
Google Scholar
[18]
K.O.E. Henriksson, N. Sandberg, J. Wallenius, Carbides in stainless steels: Results from ab initio investigations, Appl. Phys. Lett. 93 (2008).
DOI: 10.1063/1.3026175
Google Scholar
[19]
P. Villars, L.D. Calvert., Pearson's handbook of crystallographic data for intermetallic phases, Am. Soc. Met. (1986) 3258.
Google Scholar
[20]
M. Hillert, C. Qiu, A thermodynamic assessment of the Fe-Cr-Ni-C system, Metall. Trans. A. 22 (1991) 2187-2198.
DOI: 10.1007/bf02664985
Google Scholar
[21]
C. Jiang, First-principles study of structural, elastic, and electronic properties of chromium carbides, Appl. Phys. Lett. 92 (2008) 2012-(2015).
DOI: 10.1063/1.2838345
Google Scholar
[22]
Y. Nakajima, E. Takahashi, N. Sata, Y. Nishihara, K. Hirose, K.I. Funakoshi, Y. Ohishi, Thermoelastic property and high-pressure stability of Fe7C3: Implication for iron-carbide in the Earth's core, Am. Mineral. 96 (2011) 1158-1165.
DOI: 10.2138/am.2011.3703
Google Scholar