Structure and Stability of Intermediate (Fe, Cr)7C3 Carbides

Article Preview

Abstract:

The paper presents a systematic approach to calculate the structure and stability of intermediate (Cr, Fe)7C3 carbides in hexagonal and orthorhombic phases within the framework of density functional theory. It was shown, that the formation energy of the system changes non-monotonically with chromium concentration; the fact is consistent with thermodynamics. It was found, that some intermetallic carbides in the system are more stable than binary counterparts.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

634-639

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.I. Tsypin, White Wear-Resistant Cast Irons: Structure and Properties, Metallurgiya Publ., Moscow, (1983).

Google Scholar

[2] A.A. Zhukov, G.I. Sil'man, M.S. Frol'tsov, Wear-Resistant Castings of Complex Alloy White Cast Irons, Mashinostroenie Publ., Moscow, (1984).

Google Scholar

[3] D.A. Mirzaev, N.M. Mirzaeva, A.N. Emelyushin, Ledeburite alloys for tools for machining of graphite, Metal Science and Heat Treatment, 30 (1988) 519-523.

DOI: 10.1007/bf00777442

Google Scholar

[4] A.N. Emelyushin, D.A. Mirzaev, N.M. Mirzaeva, E.V. Petrochenko, K.Yu. Okishev, O.S. Molochkova, Cast Tools of Chromium Cast Irons. Structure and Properties. MGTU Publ., Magnitogorsk, (2016).

Google Scholar

[5] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[6] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B. 41 (1990) 7892-7895.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[7] J.P. Perdew, M. Ernzerhof, K. Burke, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[8] J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B. 23 (1981) 5048-5079.

DOI: 10.1103/physrevb.23.5048

Google Scholar

[9] H. Monkhorst, J. Pack, Special points for Brillouin zone integrations, Phys. Rev. B. 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[10] A. Tkatchenko, M. Scheffler, Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data, Phys. Rev. Lett. 102 (2009) 73005.

DOI: 10.1103/physrevlett.102.073005

Google Scholar

[11] Information on http://materials.springer.com/isp/crystallographic/docs/sd_0313352.

Google Scholar

[12] Information on http://materials.springer.com/isp/crystallographic/docs/sd_1011336.

Google Scholar

[13] M.A. Konyaeva, N.I. Medvedeva, Electronic structure, magnetic properties, and stability of the binary and ternary carbides (Fe,Cr)3C and (Fe,Cr)7C3, Phys. Solid State. 51 (2009) 2084-(2089).

DOI: 10.1134/s1063783409100151

Google Scholar

[14] Information on http://kth.diva-portal.org/smash/record.jsf?pid=diva2:642410&dswid=-3363.

Google Scholar

[15] B. Xiao, J. Feng, C.T. Zhou, J.D. Xing, X.J. Xie, Y.H. Chen, First principles study on the electronic structures and stability of Cr7C3 type multi-component carbides, Chem. Phys. Lett. 459 (2008) 129-132.

DOI: 10.1016/j.cplett.2008.05.072

Google Scholar

[16] M. Small, E. Ryba, Calculation and evaluation of the Gibbs energies of formation of Cr3C2, Cr7C3, and Cr23C6, Metall. Trans. A. 12 (1981) 1389-1396.

DOI: 10.1007/bf02643683

Google Scholar

[17] C.M. Fang, M.A. van Huis, H.W. Zandbergen, Structural, electronic, and magnetic properties of iron carbide Fe7C3 phases from first-principles theory, Phys. Rev. B. 80 (2009) 224108.

Google Scholar

[18] K.O.E. Henriksson, N. Sandberg, J. Wallenius, Carbides in stainless steels: Results from ab initio investigations, Appl. Phys. Lett. 93 (2008).

DOI: 10.1063/1.3026175

Google Scholar

[19] P. Villars, L.D. Calvert., Pearson's handbook of crystallographic data for intermetallic phases, Am. Soc. Met. (1986) 3258.

Google Scholar

[20] M. Hillert, C. Qiu, A thermodynamic assessment of the Fe-Cr-Ni-C system, Metall. Trans. A. 22 (1991) 2187-2198.

DOI: 10.1007/bf02664985

Google Scholar

[21] C. Jiang, First-principles study of structural, elastic, and electronic properties of chromium carbides, Appl. Phys. Lett. 92 (2008) 2012-(2015).

DOI: 10.1063/1.2838345

Google Scholar

[22] Y. Nakajima, E. Takahashi, N. Sata, Y. Nishihara, K. Hirose, K.I. Funakoshi, Y. Ohishi, Thermoelastic property and high-pressure stability of Fe7C3: Implication for iron-carbide in the Earth's core, Am. Mineral. 96 (2011) 1158-1165.

DOI: 10.2138/am.2011.3703

Google Scholar