Physical and Chemical Properties of Activated Lignocellulose and its Areas of Application

Article Preview

Abstract:

In this paper we present the results of a study of the physical and chemical properties of activated lignocellulose obtained in the process of steam explosion treatment of various breeds of wood. It is shown that fibrous material has a high potential for scientific and commercial use: in the field of production of pulp for paper and cardboard production in a more efficient way, to obtain microcrystalline cellulose by hydrolysis, to produce coarse lignocellulosic fibers for the production of construction and insulation boards with new properties. The scope of activated lignocellulose is not limited only to these directions, but can be significantly expanded due to the competent use of its physical and chemical properties.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

779-784

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.B. Prosvirnikov, E.I. Baigildeeva, A.R. Sadrtdinov, A.A. Fomin, Modelling heat and mass transfer processes in capillary-porous materials at their grinding by pressure release. Proceedings of 2017 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2017, 8076443.

DOI: 10.1109/icieam.2017.8076443

Google Scholar

[2] A.A. Fomin, Limiting product surface and its use in profile milling design operations. Solid State Phenomena, 265 (20170) 672-678.

DOI: 10.4028/www.scientific.net/ssp.265.672

Google Scholar

[3] V.G. Gusev, A.A. Fomin, Multidimensional Model of Surface Waviness Treated by Shaping Cutter, Procedia Engineering, 206 (2017) 286-292.

DOI: 10.1016/j.proeng.2017.10.475

Google Scholar

[4] I.V. Anisimova, Y.F. Gortyshov, V.N. Ignat'ev, Russ. Aeronaut. 59 (2016) 414.

Google Scholar

[5] I.A. Popov, Cooling systems for electronic devices based on the ribbed heat pipe, Russian Aeronautics (Iz VUZ), 58.3 (2015) 309-314.

DOI: 10.3103/s1068799815030101

Google Scholar

[6] R. Safin, S. Barcik, D. Tuntsev, R. Safin, R. Hismatov, A mathematical model of thermal decomposition of wood in conditions of fluidized bed. Acta Facultatis Xylologiae Zvolen res Publica Slovaca, 58.2 (2016) 141-148.

Google Scholar

[7] L. Yang, H. Rong, Y. He, J. of Materi Eng and Perform, 23.2 (2014) 429-438.

Google Scholar

[8] L.K. Gujjala, T.K. Bandyopadhyay, R. Banerjee, Kinetic modelling of laccase mediated delignification of Lantana camara. Bioresource technology, 212 (2016) 47-54.

DOI: 10.1016/j.biortech.2016.04.006

Google Scholar

[9] E.P. Dagnino, Optimization of the soda-ethanol delignification stage for a rice husk biorefinery, Industrial Crops and Products, 97 (2017) 156-165.

DOI: 10.1016/j.indcrop.2016.12.016

Google Scholar

[10] V.A. Lashkov, IOP Conf. Ser.: Mater. Sci. Eng. 124 (2016) 012111.

Google Scholar

[11] S.K. Dutta, G. Halder, M.K. Mandal, Modeling and optimization of bi-directional delignification of rice straw for production of bio-fuel feedstock using central composite design approach. Energy, 71 (2014) 579-587.

DOI: 10.1016/j.energy.2014.04.108

Google Scholar

[12] Qing, Qing, A combined sodium phosphate and sodium sulfide pretreatment for enhanced enzymatic digestibility and delignification of corn stover, Bioresource Technology, 218 (2016) 209-216.

DOI: 10.1016/j.biortech.2016.06.063

Google Scholar

[13] D. B. Prosvirnikov, Modeling of delignification process of activated wood and equipment for its implementation, IOP Conf. Ser.: Mater. Sci. Eng.  221.1 (2017) 012009.

DOI: 10.1088/1757-899x/221/1/012009

Google Scholar

[14] M. Karimi, R. Esfandiar, D. Biria, Simultaneous delignification and saccharification of rice straw as a lignocellulosic biomass by immobilized Thrichoderma viride sp. to enhance enzymatic sugar production. Renewable Energy, 104 (2017) 88-95.

DOI: 10.1016/j.renene.2016.12.012

Google Scholar

[15] N. Prathyusha, Modelling of pretreatment and saccharification with different feedstocks and kinetic modeling of sorghum saccharification, Bioresource technology, 221 (2016) 550-559.

DOI: 10.1016/j.biortech.2016.09.007

Google Scholar

[16] N.F. Timerbaev, Application of software solutions for modeling and analysis of parameters of belt drive in engineering, IOP Conf. Ser.: Earth Environ. Sci. 87.8 (2017) 082047.

DOI: 10.1088/1755-1315/87/8/082047

Google Scholar

[17] V.A. Sychevskii, Drying of colloidal capillary-porous materials. International Journal of Heat and Mass Transfer, 85 (2015) 740-749.

DOI: 10.1016/j.ijheatmasstransfer.2015.02.025

Google Scholar

[18] N.F. Timerbaev, D.F. Ziatdinova, R.G. Safin, A.R. Sadrtdinov, Gas purification system modeling in fatty acids removing from soapstock, Proceedings of 2017 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2017, 8076418.

DOI: 10.1109/icieam.2017.8076418

Google Scholar

[19] J. Susilo, C.P.J. Bennington, Modelling kappa number and pulp viscosity in industrial oxygen delignification systems. Chemical Engineering Research and Design, 85.6 (2007) 872-881.

DOI: 10.1205/cherd06167

Google Scholar

[20] D.V. Tuntsev, The mathematical model of fast pyrolysis of wood waste, Proceedings of 2015 International Conference on Mechanical Engineering, Automation and Control Systems, MEACS 2015, 7414929.

DOI: 10.1109/meacs.2015.7414929

Google Scholar

[21] T. Salmi, J. Wärn, J.P. Mikkola, M. Rönnholm, Modelling and simulation of porous, reactive particles in liquids: delignification of wood. Computer Aided Chemical Engineering, 20 (2005) 325-330.

DOI: 10.1016/s1570-7946(05)80176-2

Google Scholar

[22] N.F. Timerbaev, A.R. Sadrtdinov, R.G. Safin, Software systems application for shafts strength analysis in mechanical engineering. Procedia Engineering, 206 (2017) 1376-1381.

DOI: 10.1016/j.proeng.2017.10.648

Google Scholar

[23] A. Vega, M. Bao, J. Lamas, Application of factorial design to the modelling of organosolv delignification of Miscanthus sinensis (elephant grass) with phenol and dilute acid solutions. Bioresource technology, 61.1 (1997) 1-7.

DOI: 10.1016/s0960-8524(96)00056-9

Google Scholar

[24] A.R. Sadrtdinov, IOP Conf. Ser.: Mater. Sci. Eng. 124 (2016) 012092.

Google Scholar

[25] R. Kumar, F. Hu, C.A. Hubbell, A.J. Ragauskas, C.E. Wyman, Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass. Bioresource technology, 130 (2013) 372-381.

DOI: 10.1016/j.biortech.2012.12.028

Google Scholar

[26] V.G. Gusev, A.A. Fomin, A.R. Sadrtdinov, Dynamics of Stock Removal in Profile Milling Process by Shaped Tool. Procedia Engineering, 206 (2017) 279-285.

DOI: 10.1016/j.proeng.2017.10.474

Google Scholar

[27] G.J.M. Rocha, Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production, Industrial Crops and Products, 35.1 (2012) 274-279.

DOI: 10.1016/j.indcrop.2011.07.010

Google Scholar

[28] D.B. Prosvirnikov, IOP Conf. Ser.: Mater. Sci. Eng. 221 (2017) 012010.

Google Scholar

[29] G. Marton, Modelling of biomass fractionation by prehydrolysis-delignification, Chemical engineering science, 43.8 (1988) 1807-1812.

DOI: 10.1016/0009-2509(88)87045-3

Google Scholar

[30] M. Huron, D. Hudebine, N.L. Ferreira, D. Lachenal, Impact of delignification on the morphology and the reactivity of steam exploded wheat straw. Industrial Crops and Products, 79 (2016) 104-109.

DOI: 10.1016/j.indcrop.2015.10.040

Google Scholar

[31] R.G. Safin, Technology of Wood Waste Processing to Obtain Construction Material, Solid State Phenomena, 265 (2017) 245-249.

DOI: 10.4028/www.scientific.net/ssp.265.245

Google Scholar

[32] V.V. Stepanov, Composite Material for Railroad Tie, Solid State Phenomena, 265 (2017) 587-591.

DOI: 10.4028/www.scientific.net/ssp.265.587

Google Scholar

[33] C.A. Hubbell, A.J. Ragauskas, Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresource Technology, 101.19 (2010) 7410-7415.

DOI: 10.1016/j.biortech.2010.04.029

Google Scholar

[34] I.A. Popov, A.V. Shchelchkov, Y.F. Gortyshov, High Temp, 55.4 (2017) 524.

Google Scholar

[35] P.C. Pinto, Kraft delignification of energy crops in view of pulp production and lignin valorization, Industrial Crops and Products, 71 (2015) 153-162.

DOI: 10.1016/j.indcrop.2015.03.069

Google Scholar