[1]
D.B. Prosvirnikov, E.I. Baigildeeva, A.R. Sadrtdinov, A.A. Fomin, Modelling heat and mass transfer processes in capillary-porous materials at their grinding by pressure release. Proceedings of 2017 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2017, 8076443.
DOI: 10.1109/icieam.2017.8076443
Google Scholar
[2]
A.A. Fomin, Limiting product surface and its use in profile milling design operations. Solid State Phenomena, 265 (20170) 672-678.
DOI: 10.4028/www.scientific.net/ssp.265.672
Google Scholar
[3]
V.G. Gusev, A.A. Fomin, Multidimensional Model of Surface Waviness Treated by Shaping Cutter, Procedia Engineering, 206 (2017) 286-292.
DOI: 10.1016/j.proeng.2017.10.475
Google Scholar
[4]
I.V. Anisimova, Y.F. Gortyshov, V.N. Ignat'ev, Russ. Aeronaut. 59 (2016) 414.
Google Scholar
[5]
I.A. Popov, Cooling systems for electronic devices based on the ribbed heat pipe, Russian Aeronautics (Iz VUZ), 58.3 (2015) 309-314.
DOI: 10.3103/s1068799815030101
Google Scholar
[6]
R. Safin, S. Barcik, D. Tuntsev, R. Safin, R. Hismatov, A mathematical model of thermal decomposition of wood in conditions of fluidized bed. Acta Facultatis Xylologiae Zvolen res Publica Slovaca, 58.2 (2016) 141-148.
Google Scholar
[7]
L. Yang, H. Rong, Y. He, J. of Materi Eng and Perform, 23.2 (2014) 429-438.
Google Scholar
[8]
L.K. Gujjala, T.K. Bandyopadhyay, R. Banerjee, Kinetic modelling of laccase mediated delignification of Lantana camara. Bioresource technology, 212 (2016) 47-54.
DOI: 10.1016/j.biortech.2016.04.006
Google Scholar
[9]
E.P. Dagnino, Optimization of the soda-ethanol delignification stage for a rice husk biorefinery, Industrial Crops and Products, 97 (2017) 156-165.
DOI: 10.1016/j.indcrop.2016.12.016
Google Scholar
[10]
V.A. Lashkov, IOP Conf. Ser.: Mater. Sci. Eng. 124 (2016) 012111.
Google Scholar
[11]
S.K. Dutta, G. Halder, M.K. Mandal, Modeling and optimization of bi-directional delignification of rice straw for production of bio-fuel feedstock using central composite design approach. Energy, 71 (2014) 579-587.
DOI: 10.1016/j.energy.2014.04.108
Google Scholar
[12]
Qing, Qing, A combined sodium phosphate and sodium sulfide pretreatment for enhanced enzymatic digestibility and delignification of corn stover, Bioresource Technology, 218 (2016) 209-216.
DOI: 10.1016/j.biortech.2016.06.063
Google Scholar
[13]
D. B. Prosvirnikov, Modeling of delignification process of activated wood and equipment for its implementation, IOP Conf. Ser.: Mater. Sci. Eng. 221.1 (2017) 012009.
DOI: 10.1088/1757-899x/221/1/012009
Google Scholar
[14]
M. Karimi, R. Esfandiar, D. Biria, Simultaneous delignification and saccharification of rice straw as a lignocellulosic biomass by immobilized Thrichoderma viride sp. to enhance enzymatic sugar production. Renewable Energy, 104 (2017) 88-95.
DOI: 10.1016/j.renene.2016.12.012
Google Scholar
[15]
N. Prathyusha, Modelling of pretreatment and saccharification with different feedstocks and kinetic modeling of sorghum saccharification, Bioresource technology, 221 (2016) 550-559.
DOI: 10.1016/j.biortech.2016.09.007
Google Scholar
[16]
N.F. Timerbaev, Application of software solutions for modeling and analysis of parameters of belt drive in engineering, IOP Conf. Ser.: Earth Environ. Sci. 87.8 (2017) 082047.
DOI: 10.1088/1755-1315/87/8/082047
Google Scholar
[17]
V.A. Sychevskii, Drying of colloidal capillary-porous materials. International Journal of Heat and Mass Transfer, 85 (2015) 740-749.
DOI: 10.1016/j.ijheatmasstransfer.2015.02.025
Google Scholar
[18]
N.F. Timerbaev, D.F. Ziatdinova, R.G. Safin, A.R. Sadrtdinov, Gas purification system modeling in fatty acids removing from soapstock, Proceedings of 2017 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2017, 8076418.
DOI: 10.1109/icieam.2017.8076418
Google Scholar
[19]
J. Susilo, C.P.J. Bennington, Modelling kappa number and pulp viscosity in industrial oxygen delignification systems. Chemical Engineering Research and Design, 85.6 (2007) 872-881.
DOI: 10.1205/cherd06167
Google Scholar
[20]
D.V. Tuntsev, The mathematical model of fast pyrolysis of wood waste, Proceedings of 2015 International Conference on Mechanical Engineering, Automation and Control Systems, MEACS 2015, 7414929.
DOI: 10.1109/meacs.2015.7414929
Google Scholar
[21]
T. Salmi, J. Wärn, J.P. Mikkola, M. Rönnholm, Modelling and simulation of porous, reactive particles in liquids: delignification of wood. Computer Aided Chemical Engineering, 20 (2005) 325-330.
DOI: 10.1016/s1570-7946(05)80176-2
Google Scholar
[22]
N.F. Timerbaev, A.R. Sadrtdinov, R.G. Safin, Software systems application for shafts strength analysis in mechanical engineering. Procedia Engineering, 206 (2017) 1376-1381.
DOI: 10.1016/j.proeng.2017.10.648
Google Scholar
[23]
A. Vega, M. Bao, J. Lamas, Application of factorial design to the modelling of organosolv delignification of Miscanthus sinensis (elephant grass) with phenol and dilute acid solutions. Bioresource technology, 61.1 (1997) 1-7.
DOI: 10.1016/s0960-8524(96)00056-9
Google Scholar
[24]
A.R. Sadrtdinov, IOP Conf. Ser.: Mater. Sci. Eng. 124 (2016) 012092.
Google Scholar
[25]
R. Kumar, F. Hu, C.A. Hubbell, A.J. Ragauskas, C.E. Wyman, Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass. Bioresource technology, 130 (2013) 372-381.
DOI: 10.1016/j.biortech.2012.12.028
Google Scholar
[26]
V.G. Gusev, A.A. Fomin, A.R. Sadrtdinov, Dynamics of Stock Removal in Profile Milling Process by Shaped Tool. Procedia Engineering, 206 (2017) 279-285.
DOI: 10.1016/j.proeng.2017.10.474
Google Scholar
[27]
G.J.M. Rocha, Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production, Industrial Crops and Products, 35.1 (2012) 274-279.
DOI: 10.1016/j.indcrop.2011.07.010
Google Scholar
[28]
D.B. Prosvirnikov, IOP Conf. Ser.: Mater. Sci. Eng. 221 (2017) 012010.
Google Scholar
[29]
G. Marton, Modelling of biomass fractionation by prehydrolysis-delignification, Chemical engineering science, 43.8 (1988) 1807-1812.
DOI: 10.1016/0009-2509(88)87045-3
Google Scholar
[30]
M. Huron, D. Hudebine, N.L. Ferreira, D. Lachenal, Impact of delignification on the morphology and the reactivity of steam exploded wheat straw. Industrial Crops and Products, 79 (2016) 104-109.
DOI: 10.1016/j.indcrop.2015.10.040
Google Scholar
[31]
R.G. Safin, Technology of Wood Waste Processing to Obtain Construction Material, Solid State Phenomena, 265 (2017) 245-249.
DOI: 10.4028/www.scientific.net/ssp.265.245
Google Scholar
[32]
V.V. Stepanov, Composite Material for Railroad Tie, Solid State Phenomena, 265 (2017) 587-591.
DOI: 10.4028/www.scientific.net/ssp.265.587
Google Scholar
[33]
C.A. Hubbell, A.J. Ragauskas, Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresource Technology, 101.19 (2010) 7410-7415.
DOI: 10.1016/j.biortech.2010.04.029
Google Scholar
[34]
I.A. Popov, A.V. Shchelchkov, Y.F. Gortyshov, High Temp, 55.4 (2017) 524.
Google Scholar
[35]
P.C. Pinto, Kraft delignification of energy crops in view of pulp production and lignin valorization, Industrial Crops and Products, 71 (2015) 153-162.
DOI: 10.1016/j.indcrop.2015.03.069
Google Scholar