[1]
S.P. Tan, M. Piri, Equation-of-state modeling of confined-fluid phase equilibria in nanopores, Fluid Phase Equilibr., 393 (2015) 48-63.
DOI: 10.1016/j.fluid.2015.02.028
Google Scholar
[2]
A.A. Valeev, Simple Kelvin equation applicable in the critical point vicinity, European Journal of Natural History, 5 (2014) 13-14.
DOI: 10.17513/ejnh.506-33335
Google Scholar
[3]
A.A. Valeev, E.V. Morozova, Simple Universal Kelvin Equation Valid in Critical Point Vicinity and its Application to Carbon Dioxide Capillary Condensation in Mesoporous Silica, Solid State Phenomena, 265 (2017) 392-397.
DOI: 10.4028/www.scientific.net/ssp.265.392
Google Scholar
[4]
A.A. Valeev, Simple Universal Kelvin Equation Valid in the Critical Point Vicinity, External-Internal State Correction, and their Application to Nitrogen Capillary Condensation in Mesoporous Silica MCM-41: submitted to Surface Review and Letters (2017).
DOI: 10.4028/www.scientific.net/ssp.299.270
Google Scholar
[5]
K. Morishige, M. Ito, Capillary condensation of nitrogen in MCM-41 and SBA-15, J. Chem. Phys., 117 (2002) 8036-8041.
DOI: 10.1063/1.1510440
Google Scholar
[6]
B.E. Poling, J.M. Prausnitz, J.P. O'Connell, The Properties of Gases and Liquids, fifth ed., McGraw-Hill, New York, (2001).
Google Scholar
[7]
R.C. Tolman, The effect of droplet size on surface tension, J. Chem. Phys., 17 (1949) 333-337.
Google Scholar
[8]
E. Barsotti, S. P. Tan, S. Saraji, M. Piri, J.-H. Chen, A review on capillary condensation in nanoporous media: Implications for hydrocarbon recovery from tight reservoirs, Fuel, 184 (2016) 344-361.
DOI: 10.1016/j.fuel.2016.06.123
Google Scholar
[9]
V.G. Arakcheev, A.A. Valeev, V.B. Morozov, A.N. Olenin, CARS diagnostics of molecular media under nanoporous confinement, Laser Physics, 18 (2008) 1451-1458.
DOI: 10.1134/s1054660x08120128
Google Scholar
[10]
V.G. Arakcheev, S.A. Dubyanskiy, V.B. Morozov, A.N. Olenin, V.G. Tunkin, A.A. Valeev, D.V. Yakovlev, V.N. Bagratashvili, V.K. Popov, Vibrational line shapes of liquid and subcritical carbon dioxide in nano-pores, Journal Of Raman Spectroscopy, 39 (2008).
DOI: 10.1002/jrs.1974
Google Scholar
[11]
V.G. Arakcheev, A.A. Valeev, V.B. Morozov, A.N. Olenin, D.V. Yakovlev, V.N. Bagratashvili, V.K. Popov, Spectral characteristics of subcritical carbon dioxide in nanopores, Russian Journal of Physical Chemistry B, 3 (2009) 1062-1066.
DOI: 10.1134/s1990793109070045
Google Scholar
[12]
V. Arakcheev, V. Morozov, A. Valeev, CARS diagnostics of phase transitions of molecular media confined in nanopores, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, 2009, Article number 5196584.
DOI: 10.1109/cleoe-eqec.2009.5196584
Google Scholar
[13]
V.G. Arakcheev, A.A. Valeev, V.B. Morozov, I.R. Farizanov, Phase behavior of the molecular medium in nanopores and vibrational spectra structure transformation, Moscow University Physics Bulletin, 66 (2011) 147-154.
DOI: 10.3103/s0027134911020032
Google Scholar
[14]
O.V. Andreeva, V.G. Arakcheev, V.B. Morozov, A.A. Valeev, V.N. Bagratashvili, V.K. Popov, CARS diagnostics of fluid adsorption and condensation in small mesopores, Journal of Raman Spectroscopy, 42 (2011) 1747-1753.
DOI: 10.1002/jrs.2979
Google Scholar
[15]
V.G. Arakcheev, A.N. Bekin, V.B. Morozov, CARS detection of liquid-like phase appearance in small mesopores, Laser Physics, 27 (2017) 115701.
DOI: 10.1088/1555-6611/aa8cd8
Google Scholar
[16]
H. Omi, B. Nagasaka, K. Miyakubo, T. Ueda, T. Eguchi, High-pressure 129Xe NMR study of supercritical xenon confined in the mesopores of FSM-16, Phys. Chem. Chem. Phys., 6 (2004) 1299-1303.
DOI: 10.1039/b314841f
Google Scholar
[17]
P.I. Ravikovitch, G.L. Haller, A.V. Neimark, Density Functional Theory Model for Calculating Pore Size Distributions: Pore Structure of Nanoporous Catalysts, Adv. Colloid Interface Sci., 76-77 (1998) 203-226.
DOI: 10.1016/s0001-8686(98)00047-5
Google Scholar
[18]
R. Span, W. Wagner, Equations of State for Technical Applications. II. Results for Nonpolar Fluids, Int. J. Thermophys., 24 (2003) 41-109.
Google Scholar
[19]
R. Span, E.W. Lemmon, R.T. Jacobsen, W. Wagner, A. Yokozeki, A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa, J. Phys. Chem. Ref. Data, 29 (2000).
DOI: 10.1063/1.1349047
Google Scholar
[20]
R. Evans, U. Marini Bettolo Marconi, P. Tarazona, J. Chem. Phys., 84 (1986) 2376-2399.
Google Scholar
[21]
R. Evans, U. Marini Bettolo Marconi, P. Tarazona, J. Chem. Soc. Faraday Trans., 82 (1986) 1763-1787.
Google Scholar
[22]
P.I. Ravikovitch, S.C.Ó. Domhnail, A.V. Neimark, F. Schüth, K.K. Unger, Capillary Hysteresis in Nanopores: Theoretical and Experimental Studies of Nitrogen Adsorption on MCM-41, Langmuir, 11 (1995) 4765-4772.
DOI: 10.1021/la00012a030
Google Scholar
[23]
A.V. Neimark, P.I. Ravikovitch, A. Vishnyakov, Adsorption Hysteresis in Nanopores, Phys. Rev. E, 62 (2000) R1493-R1496.
DOI: 10.1103/physreve.62.r1493
Google Scholar
[24]
A. Vishnyakov, A.V. Neimark, Studies of Liquid-Vapor Equilibrium, Criticality and Spinodal Transitions in Nanopores by the Gauge Cell Monte Carlo Simulation Method, J. Phys. Chem. B, 105 (2001) 7009-7020.
DOI: 10.1021/jp003994o
Google Scholar
[25]
G.S. Heffelfinger, F. van Swol, K.E. Gubbins, Adsorption hysteresis in narrow pores, J. Chem. Phys., 89 (1988) 5202-5205.
DOI: 10.1063/1.455610
Google Scholar
[26]
U. Marini Bettolo Marconi, F. van Swol, Microscopic model for hysteresis and phase equilibria of fluids confined between parallel plates, Phys. Rev. A, 39 (1989) 4109-4116.
DOI: 10.1103/physreva.39.4109
Google Scholar
[27]
A. Papandopulu, F. van Swol, U. Marini Bettolo Marconi, Pore-end effects on adsorption hysteresis in cylindrical and slitlike pores, J. Chem. Phys., 97 (1992) 6942-6952.
DOI: 10.1063/1.463648
Google Scholar