[1]
Yu. Zaikov, A. Khramov, V. Kovrov, V. Kryukovsky, A. Apisarov, O. Chemesov, N. Shurov, O. Tkacheva, Electrolysis of aluminum in the low melting electrolytes basedon potassium cryolite, Light metals. 1 (2008) 505-509.
Google Scholar
[2]
H. Kvande, W. Haupin, Inert anode for Al smelters: energy balances and environmental impact, JOM. 5 (2001) 29-31.
DOI: 10.1007/s11837-001-0205-6
Google Scholar
[3]
J. Thonstad, E. Olsen, Cell Operation and Metal Purity Challenges for the Use of Inert Anodes, JOM. 5 (2001) 36-40.
DOI: 10.1007/s11837-001-0207-4
Google Scholar
[4]
J. Thonstad, A. Kiszha, J. Hives, Anode overvoltage on metallic inert anodes in low-melting bath, Light Metals. 1 (2006) 373-380.
Google Scholar
[5]
V.A. Lebedev, V.N. Pismak, A.Yu. Nikolaev The possibility of low-temperature electrolysis of alumina, Tsvetnie metally. 4 (2007) 85-87.
Google Scholar
[6]
J. Yang, J.N. Hryn, B.R. Davis, A. Roy, G.K. Krumdick, J.A. Pomykala, New opportunities for aluminum electrolysis with metal anode in a low temperature electrolyte system, Light Metals. 1 (2004) 321-323.
Google Scholar
[7]
V. De Nora, T. Nguyen, R. Von Kaenel, J. Antille, L. Klinger, Semi-vertical De Nora inert metallic anode, Light Metals, 1 (2007) 501-505.
Google Scholar
[8]
D.A. JR Weirauch, W.J. Krafick, G. Ackart, P.D. Ownby, The wettabiblity of titanium diboride by molten aluminium drops, Journal of Material Science. 40 (2005). 2301.
DOI: 10.1007/s10853-005-1949-0
Google Scholar
[9]
D.A. Simakov, A.V. Frolov, A.O Gusev, The creation of technology of electrolysis using inert anodes, Tsvetnie metally. 1 (2010) 546-554.
Google Scholar
[10]
L. Vansin, Pilot testing of inert anode for aluminum electrolysis . IV International congress "Non-ferrous metals and minerals. 1 (2012) 467-471.
Google Scholar
[11]
O. Tkacheva, J. Spangenberger, B. Davis, J. Hryn, Aluminum electrolysis in an inert anode cell, Procceding of the International Symposium on Molten Salt Chemistry and Technology. 1 (2011) 186.
DOI: 10.1002/9781118448847.ch1f
Google Scholar
[12]
О. Tkacheva, J. Hryn, J. Spangenberger, B. Davis, T. Alcorn, Operating parameters of aluminum electrolysis in KF-A1F3 based electrolytes,Light Metals. 1 (2012) 675-679.
DOI: 10.1002/9781118359259.ch116
Google Scholar
[13]
V.A. Lebedev, Universal equation for estimation of values of conventional standard electrode potentials, Rasplavy. 1 (1992) 87-90.
Google Scholar
[14]
V.A. Lebedev, Standard and apparent standard potentials of actinoids and their alloys in molten chlorides, Rasplavy. 4 (1994) 41-47.
Google Scholar
[15]
V.A. Lebedev, Correlation of standard and conventional standard redox potentials in molten chlorides, Doklady Akademii nauk SSSR. 4 (1996) 493-495.
Google Scholar
[16]
A. Dedyukhin, A. Apisarov, O.Tkatcheva, Y.Zaikov, A. Redkin, Alumina Solubility and Electrical Conductivity in Potassium Cryolites with Low Cryolite Ratio, Molten Salts and Ionic Liquids: Never the Twain? 1(2012) 75-84.
DOI: 10.1002/9780470947777.ch6
Google Scholar
[17]
A. Dedyukhin, A. Apisarov, O.Tkacheva, Influence of CaF2 on the properties of the low-temperature electrolyte based on the KF-A1F3 (CR=1.3) system, Light metals. 1(2008) 509-511.
Google Scholar
[18]
A.P. Apisarov, A.E. Dedyukhin, A.A. Red'kin, O.Yu. Tkacheva, Yu.P. Zaikov, Physicochemical properties of KF-NaF-AlF3 molten electrolytes, Russian Journal of Electrochemistry. 6 (2010) 633-639.
DOI: 10.1134/s1023193510060066
Google Scholar
[19]
A. Apisarov, A. Dedyukhin, E. Nikolaeva, P. Tin'ghaev, O. Tkacheva, A. Redkin, Y. Zaikov, Liquidus temperatures of cryolite melts with low cryolite ratio, Light metals. 2 (2010) 395-398.
DOI: 10.1007/s11663-010-9462-5
Google Scholar
[20]
J. Yang, W. Li, H. Yan, D. Liu, Conductivity of KF-NaF-AlF3 system Low-temperature electrolyte, Light metals. 1 (2013) 689-695.
DOI: 10.1007/978-3-319-65136-1_118
Google Scholar