Efficient Assessment of Physico-Chemical Properties of the Cryolite Melts for Research on the Improvement of Low-Temperature Aluminum Electrolysis

Article Preview

Abstract:

Modern aluminum electrolysis in cryolite-alumina melts is energy-intensive, inefficient and environmentally hazardous production. Addressing these significant shortcomings, the technology of low-temperature electrolyte is directed. The basis of low-temperature electrolysis is potassium cryolite, which results in high magnitude and rate of dissolution of alumina. Additive of sodium and lithium fluorides provide the necessary conductivity. Experimental investigation of these properties is extremely time consuming. In this work, as a parameter, which will allow to characterize effectively and rapidly the complexing ability of cryolite melts, the ratio of cationic ion power of Al3+ to the total power of the other cations of the melt is proposed. Regression analyses of the known experimental data establish the existence with a high level of reliability (R2=0.966-0.995) of a directly proportional dependence of this parameter on solubility of alumina and electrical conductivity of cryolite melts.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

839-844

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yu. Zaikov, A. Khramov, V. Kovrov, V. Kryukovsky, A. Apisarov, O. Chemesov, N. Shurov, O. Tkacheva, Electrolysis of aluminum in the low melting electrolytes basedon potassium cryolite, Light metals. 1 (2008) 505-509.

Google Scholar

[2] H. Kvande, W. Haupin, Inert anode for Al smelters: energy balances and environmental impact, JOM. 5 (2001) 29-31.

DOI: 10.1007/s11837-001-0205-6

Google Scholar

[3] J. Thonstad, E. Olsen, Cell Operation and Metal Purity Challenges for the Use of Inert Anodes, JOM. 5 (2001) 36-40.

DOI: 10.1007/s11837-001-0207-4

Google Scholar

[4] J. Thonstad, A. Kiszha, J. Hives, Anode overvoltage on metallic inert anodes in low-melting bath, Light Metals. 1 (2006) 373-380.

Google Scholar

[5] V.A. Lebedev, V.N. Pismak, A.Yu. Nikolaev The possibility of low-temperature electrolysis of alumina, Tsvetnie metally. 4 (2007) 85-87.

Google Scholar

[6] J. Yang, J.N. Hryn, B.R. Davis, A. Roy, G.K. Krumdick, J.A. Pomykala, New opportunities for aluminum electrolysis with metal anode in a low temperature electrolyte system, Light Metals. 1 (2004) 321-323.

Google Scholar

[7] V. De Nora, T. Nguyen, R. Von Kaenel, J. Antille, L. Klinger, Semi-vertical De Nora inert metallic anode, Light Metals, 1 (2007) 501-505.

Google Scholar

[8] D.A. JR Weirauch, W.J. Krafick, G. Ackart, P.D. Ownby, The wettabiblity of titanium diboride by molten aluminium drops, Journal of Material Science. 40 (2005). 2301.

DOI: 10.1007/s10853-005-1949-0

Google Scholar

[9] D.A. Simakov, A.V. Frolov, A.O Gusev, The creation of technology of electrolysis using inert anodes, Tsvetnie metally. 1 (2010) 546-554.

Google Scholar

[10] L. Vansin, Pilot testing of inert anode for aluminum electrolysis . IV International congress "Non-ferrous metals and minerals. 1 (2012) 467-471.

Google Scholar

[11] O. Tkacheva, J. Spangenberger, B. Davis, J. Hryn, Aluminum electrolysis in an inert anode cell, Procceding of the International Symposium on Molten Salt Chemistry and Technology. 1 (2011) 186.

DOI: 10.1002/9781118448847.ch1f

Google Scholar

[12] О. Tkacheva, J. Hryn, J. Spangenberger, B. Davis, T. Alcorn, Operating parameters of aluminum electrolysis in KF-A1F3 based electrolytes,Light Metals. 1 (2012) 675-679.

DOI: 10.1002/9781118359259.ch116

Google Scholar

[13] V.A. Lebedev, Universal equation for estimation of values of conventional standard electrode potentials, Rasplavy. 1 (1992) 87-90.

Google Scholar

[14] V.A. Lebedev, Standard and apparent standard potentials of actinoids and their alloys in molten chlorides, Rasplavy. 4 (1994) 41-47.

Google Scholar

[15] V.A. Lebedev, Correlation of standard and conventional standard redox potentials in molten chlorides, Doklady Akademii nauk SSSR. 4 (1996) 493-495.

Google Scholar

[16] A. Dedyukhin, A. Apisarov, O.Tkatcheva, Y.Zaikov, A. Redkin, Alumina Solubility and Electrical Conductivity in Potassium Cryolites with Low Cryolite Ratio, Molten Salts and Ionic Liquids: Never the Twain? 1(2012) 75-84.

DOI: 10.1002/9780470947777.ch6

Google Scholar

[17] A. Dedyukhin, A. Apisarov, O.Tkacheva, Influence of CaF2 on the properties of the low-temperature electrolyte based on the KF-A1F3 (CR=1.3) system, Light metals. 1(2008) 509-511.

Google Scholar

[18] A.P. Apisarov, A.E. Dedyukhin, A.A. Red'kin, O.Yu. Tkacheva, Yu.P. Zaikov, Physicochemical properties of KF-NaF-AlF3 molten electrolytes, Russian Journal of Electrochemistry. 6 (2010) 633-639.

DOI: 10.1134/s1023193510060066

Google Scholar

[19] A. Apisarov, A. Dedyukhin, E. Nikolaeva, P. Tin'ghaev, O. Tkacheva, A. Redkin, Y. Zaikov, Liquidus temperatures of cryolite melts with low cryolite ratio, Light metals. 2 (2010) 395-398.

DOI: 10.1007/s11663-010-9462-5

Google Scholar

[20] J. Yang, W. Li, H. Yan, D. Liu, Conductivity of KF-NaF-AlF3 system Low-temperature electrolyte, Light metals. 1 (2013) 689-695.

DOI: 10.1007/978-3-319-65136-1_118

Google Scholar