Synthesis of Fe(III)-Based Inorganic Sorbent and its Application for Arsenic Sorption

Article Preview

Abstract:

The efficiency of application of various iron compounds for purification of aqueous media from arsenic has been studied. It is proposed to apply the active layer to a substrate of a coarser material to improve the filterability. Alumina, quartz, and crystalline sulfur are considered as carrier materials. The conditions of inorganic sorbent synthesis based on iron oxyhydrate (IOH) are determined. Effect on sorbent capacity for As (V) of the concentration of iron and sodium sulfate in the solution at the modification of alumina is determined. The results of X-ray phase analysis and scanning electron microscopy are presented. The data on the capacity of the obtained sorbent modifications for the sorption of As (V) ions under static conditions are presented. The dependence of the capacity of the sorbent for As (V) on the method of synthesis of IOH and the type of carrier is established. It is shown that the sorbent on the basis of SiO2 possesses maximum capacity.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

870-876

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Narena, H. Ohashi, Y. Okauea, Adsorption kinetics of silicic acid on akaganeite, Journal of Colloid and Interface Science, 399 (2013) 87-91.

DOI: 10.1016/j.jcis.2013.02.032

Google Scholar

[2] E.A. Deliyanni, K.A. Matis, Sorption of Cd ions onto akaganeite-type nanocrystals, Separation and Purification Technology, 45 (2005) 96-102.3.

DOI: 10.1016/j.seppur.2005.02.012

Google Scholar

[3] N.K. Lazaridis, D.N. Bakoyannakis, E.A. Deliyanni, Chromium(VI) sorptive removal from aqueous solutions by nanocrystalline akaganеite, Chemosphere, 58 (2005) 65-73.

DOI: 10.1016/j.chemosphere.2004.09.007

Google Scholar

[4] F. Kolbe, H. Weiss, P. Morgenstern, Sorption of aqueous antimony and arsenic species onto akaganeite, Journal of Colloid and Interface Science, 357 (2011) 460-465.

DOI: 10.1016/j.jcis.2011.01.095

Google Scholar

[5] P.M. Solozhenkin, E.A. Deliyanni, V.N. Bakoyannakis, Removal of As(V) ions from solution by akaganeite β-FeO(OH) nanocrystals, Journal Mineral Science, 39 (2003) 287-296.

DOI: 10.1023/b:jomi.0000013788.31888.b6

Google Scholar

[6] E.A. Deliyanni, L. Nalbandian, K.A. Matis, Adsorptive removal of arsenites by a nanocrystalline hybrid surfactant-akaganeite sorbent, Journal of Colloid and Interface Science, 302 (2006) 458-466.

DOI: 10.1016/j.jcis.2006.07.007

Google Scholar

[7] R. Chitrakar, S. Tezuka, A. Sonoda, Phosphate adsorption on synthetic goethite and akaganeite, Colloid Interface Science, 298 (2006) 602-608.

DOI: 10.1016/j.jcis.2005.12.054

Google Scholar

[8] E. Deliyanni, D.Bakoyannakis, A. Zouboulis, K. Matis, Development and study of iron-based nanosorbents, Journal of Mining and Metallurgy, 40 (2004) 1-9.

DOI: 10.2298/jmmb0401001d

Google Scholar

[9] C. Reґmazeilles, Ph. Refait, On the formation of b-FeOOH (akaganeґite) in chloride-containing environments, Corrosion Science, 49 (2007) 844-857.

DOI: 10.1016/j.corsci.2006.06.003

Google Scholar

[10] V.F. Markov, E.V. Ikanina, L.N. Maskaeva, Issledovanie ionoobmennyh svojstv kompozicionnogo sorbenta na osnove kationita ku-2 8 i gidroksida zheleza (III) po otnosheniyu k ionam medi (II), Sorbcionnye i hromatograficheskie process. 10(6) (2010).

Google Scholar

[11] A. Dabrowski, V.A. Tertykh, Adsorption on new and modified inorganic sorbents Elsevier, (1996).

Google Scholar

[12] S. Music, S. Krehula, S. Popovic, Thermal decomposition of β-FeOOH, Materials Letters, 58 (2004) 444-448.

DOI: 10.1016/s0167-577x(03)00522-6

Google Scholar

[13] J.C. Villalba, S. Berezoski, K.A. Cavicchiolli, Structural refinement and morphology of synthetic akaganeite crystals, [β-FeO(OH)], Materials Letters, 104 (2013) 17-20.

DOI: 10.1016/j.matlet.2013.04.004

Google Scholar

[14] C.L. Snow, S.J. Smith, B.E. Lang, Heat capacity studies of the iron oxyhydroxides akaganite (β-FeOOH) and lepidocrocite (γ-FeOOH), J. Chem. Thermodynamics, 43 (2011) 190-199.

DOI: 10.1016/j.jct.2010.08.022

Google Scholar

[15] H. Tanaka, R. Mishima, N. Hatanaka, Formation of magnetite rust particles by reacting iron powder with artificial α-, β- and γ-FeOOH in aqueous media, Corrosion Science, 78 (2014) 384-387.

DOI: 10.1016/j.corsci.2013.08.023

Google Scholar

[16] M. Zic, M. Risticґ, S. Music, Microstructural changes in particles detected during the transformation from β-FeOOH to α-Fe2O3 in dense aqueous suspensions, Journal of Alloys and Compounds, 464 (2008) 81-88.

DOI: 10.1016/j.jallcom.2007.10.014

Google Scholar

[17] J. Takagi, S. Takakura, T. Okada, Estimation of magneto-crystalline uniaxial anisotropy constant of β -FeOOH by Mossbauer spectroscopy, Corrosion Science, 50 (2008) 1971-(1974).

DOI: 10.1016/j.corsci.2008.05.006

Google Scholar

[18] X. Sun, C. Hu, J. Qu, Preparation and evaluation of Zr-β-FeOOH for efficient arsenic removal, Journal of Environmental Sciences, 25 (2013) 815-822.

DOI: 10.1016/s1001-0742(12)60085-0

Google Scholar

[19] H. Song, X. Zhang, T. Chen, One-pot synthesis of bundle-like β-FeOOH nanorods and their transformation to porous α-Fe2O3 microspheres, Ceramics International, 40 (2014) 595-602.

DOI: 10.1016/j.ceramint.2014.07.037

Google Scholar

[20] C. Wei, Z. Nan, Effects of experimental conditions on one-dimensional single-crystal nanostructure of β-FeOOH, Materials Chemistry and Physics, 27 (2011) 220-226.

DOI: 10.1016/j.matchemphys.2011.01.062

Google Scholar

[21] K.E. Garcia, C.A. Barrero, A.L. Morales, Characterization of akaganeite synthesized in presence of Al3+, Cr3+, and Cu2+ ions and urea, Materials Chemistry and Physics. 112 (2008) 120-126.

DOI: 10.1016/j.matchemphys.2008.05.021

Google Scholar

[22] S. Li, C.L. Gan, Ultrathin β-FeOOH and ε-Fe2O3 nanowires, Chemical Physics Letters, 616 (2014) 40-43.

DOI: 10.1016/j.cplett.2014.10.014

Google Scholar

[23] M. Kersten, S. Karabacheva, N. Vlasova, Surface complexation modeling of arsenate adsorption by akageneite (β-FeOOH)-dominant granular ferric hydroxide, Colloids and Surfaces A: Physicochem. Eng. Aspects, 448 (2014) 73-80.

DOI: 10.1016/j.colsurfa.2014.02.008

Google Scholar

[24] M. Chowdhury, V. Fester, G. Kale, Growth kinetics evaluation of hydrothermally synthesized β-FeOOH nanorods, Journal of Crystal Growth, 387 (2014) 57-65.

DOI: 10.1016/j.jcrysgro.2013.10.016

Google Scholar