[1]
G. Narena, H. Ohashi, Y. Okauea, Adsorption kinetics of silicic acid on akaganeite, Journal of Colloid and Interface Science, 399 (2013) 87-91.
DOI: 10.1016/j.jcis.2013.02.032
Google Scholar
[2]
E.A. Deliyanni, K.A. Matis, Sorption of Cd ions onto akaganeite-type nanocrystals, Separation and Purification Technology, 45 (2005) 96-102.3.
DOI: 10.1016/j.seppur.2005.02.012
Google Scholar
[3]
N.K. Lazaridis, D.N. Bakoyannakis, E.A. Deliyanni, Chromium(VI) sorptive removal from aqueous solutions by nanocrystalline akaganеite, Chemosphere, 58 (2005) 65-73.
DOI: 10.1016/j.chemosphere.2004.09.007
Google Scholar
[4]
F. Kolbe, H. Weiss, P. Morgenstern, Sorption of aqueous antimony and arsenic species onto akaganeite, Journal of Colloid and Interface Science, 357 (2011) 460-465.
DOI: 10.1016/j.jcis.2011.01.095
Google Scholar
[5]
P.M. Solozhenkin, E.A. Deliyanni, V.N. Bakoyannakis, Removal of As(V) ions from solution by akaganeite β-FeO(OH) nanocrystals, Journal Mineral Science, 39 (2003) 287-296.
DOI: 10.1023/b:jomi.0000013788.31888.b6
Google Scholar
[6]
E.A. Deliyanni, L. Nalbandian, K.A. Matis, Adsorptive removal of arsenites by a nanocrystalline hybrid surfactant-akaganeite sorbent, Journal of Colloid and Interface Science, 302 (2006) 458-466.
DOI: 10.1016/j.jcis.2006.07.007
Google Scholar
[7]
R. Chitrakar, S. Tezuka, A. Sonoda, Phosphate adsorption on synthetic goethite and akaganeite, Colloid Interface Science, 298 (2006) 602-608.
DOI: 10.1016/j.jcis.2005.12.054
Google Scholar
[8]
E. Deliyanni, D.Bakoyannakis, A. Zouboulis, K. Matis, Development and study of iron-based nanosorbents, Journal of Mining and Metallurgy, 40 (2004) 1-9.
DOI: 10.2298/jmmb0401001d
Google Scholar
[9]
C. Reґmazeilles, Ph. Refait, On the formation of b-FeOOH (akaganeґite) in chloride-containing environments, Corrosion Science, 49 (2007) 844-857.
DOI: 10.1016/j.corsci.2006.06.003
Google Scholar
[10]
V.F. Markov, E.V. Ikanina, L.N. Maskaeva, Issledovanie ionoobmennyh svojstv kompozicionnogo sorbenta na osnove kationita ku-2 8 i gidroksida zheleza (III) po otnosheniyu k ionam medi (II), Sorbcionnye i hromatograficheskie process. 10(6) (2010).
Google Scholar
[11]
A. Dabrowski, V.A. Tertykh, Adsorption on new and modified inorganic sorbents Elsevier, (1996).
Google Scholar
[12]
S. Music, S. Krehula, S. Popovic, Thermal decomposition of β-FeOOH, Materials Letters, 58 (2004) 444-448.
DOI: 10.1016/s0167-577x(03)00522-6
Google Scholar
[13]
J.C. Villalba, S. Berezoski, K.A. Cavicchiolli, Structural refinement and morphology of synthetic akaganeite crystals, [β-FeO(OH)], Materials Letters, 104 (2013) 17-20.
DOI: 10.1016/j.matlet.2013.04.004
Google Scholar
[14]
C.L. Snow, S.J. Smith, B.E. Lang, Heat capacity studies of the iron oxyhydroxides akaganite (β-FeOOH) and lepidocrocite (γ-FeOOH), J. Chem. Thermodynamics, 43 (2011) 190-199.
DOI: 10.1016/j.jct.2010.08.022
Google Scholar
[15]
H. Tanaka, R. Mishima, N. Hatanaka, Formation of magnetite rust particles by reacting iron powder with artificial α-, β- and γ-FeOOH in aqueous media, Corrosion Science, 78 (2014) 384-387.
DOI: 10.1016/j.corsci.2013.08.023
Google Scholar
[16]
M. Zic, M. Risticґ, S. Music, Microstructural changes in particles detected during the transformation from β-FeOOH to α-Fe2O3 in dense aqueous suspensions, Journal of Alloys and Compounds, 464 (2008) 81-88.
DOI: 10.1016/j.jallcom.2007.10.014
Google Scholar
[17]
J. Takagi, S. Takakura, T. Okada, Estimation of magneto-crystalline uniaxial anisotropy constant of β -FeOOH by Mossbauer spectroscopy, Corrosion Science, 50 (2008) 1971-(1974).
DOI: 10.1016/j.corsci.2008.05.006
Google Scholar
[18]
X. Sun, C. Hu, J. Qu, Preparation and evaluation of Zr-β-FeOOH for efficient arsenic removal, Journal of Environmental Sciences, 25 (2013) 815-822.
DOI: 10.1016/s1001-0742(12)60085-0
Google Scholar
[19]
H. Song, X. Zhang, T. Chen, One-pot synthesis of bundle-like β-FeOOH nanorods and their transformation to porous α-Fe2O3 microspheres, Ceramics International, 40 (2014) 595-602.
DOI: 10.1016/j.ceramint.2014.07.037
Google Scholar
[20]
C. Wei, Z. Nan, Effects of experimental conditions on one-dimensional single-crystal nanostructure of β-FeOOH, Materials Chemistry and Physics, 27 (2011) 220-226.
DOI: 10.1016/j.matchemphys.2011.01.062
Google Scholar
[21]
K.E. Garcia, C.A. Barrero, A.L. Morales, Characterization of akaganeite synthesized in presence of Al3+, Cr3+, and Cu2+ ions and urea, Materials Chemistry and Physics. 112 (2008) 120-126.
DOI: 10.1016/j.matchemphys.2008.05.021
Google Scholar
[22]
S. Li, C.L. Gan, Ultrathin β-FeOOH and ε-Fe2O3 nanowires, Chemical Physics Letters, 616 (2014) 40-43.
DOI: 10.1016/j.cplett.2014.10.014
Google Scholar
[23]
M. Kersten, S. Karabacheva, N. Vlasova, Surface complexation modeling of arsenate adsorption by akageneite (β-FeOOH)-dominant granular ferric hydroxide, Colloids and Surfaces A: Physicochem. Eng. Aspects, 448 (2014) 73-80.
DOI: 10.1016/j.colsurfa.2014.02.008
Google Scholar
[24]
M. Chowdhury, V. Fester, G. Kale, Growth kinetics evaluation of hydrothermally synthesized β-FeOOH nanorods, Journal of Crystal Growth, 387 (2014) 57-65.
DOI: 10.1016/j.jcrysgro.2013.10.016
Google Scholar