[1]
Jankauskaite Virginija, Gintaras Macijauskas, Ramūnas LygaitisPolyethylene terephthalate waste recycling and application possibilities, Mater Sci (Medžiagotyra), 14.2 (2008) 119-127.
Google Scholar
[2]
R. Porebska, Polymer matrix influence on stability of wood polymer composites, Polymers for Advanced Technologies, 26.9 (2015) 1076-1082.
DOI: 10.1002/pat.3535
Google Scholar
[3]
D.B. Prosvirnikov, R.G. Safin, D.F. Ziatdinova, N.F. Timerbaev, A.R. Sadrtdinov, Modeling of delignification process of activated wood and equipment for its implementation. IOP Conf. Ser.: Mater. Sci. Eng., 221 (2017) 012009.
DOI: 10.1088/1757-899x/221/1/012009
Google Scholar
[4]
K.S. Rahman, Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): physical and mechanical properties, SpringerPlus 2.1 (2013) 629.
DOI: 10.1186/2193-1801-2-629
Google Scholar
[5]
V.A. Saldaev, IOP Conf. Ser.: Mater. Sci. Eng. 142 (2016) 012097.
Google Scholar
[6]
D.B. Prosvirnikov, IOP Conf. Ser.: Mater. Sci. Eng. 221 (2017) 012010.
Google Scholar
[7]
R.R. Safin, Research of the physical and energetic properties of the pellets based thermomodified raw wood, Russian Engineering Physics Journal, 88.4 (2015) 925-928.
Google Scholar
[8]
A.A. Fomin, Limiting product surface and its use in profile milling design operations. Solid State Phenomena, 265 (2017) 672-678.
DOI: 10.4028/www.scientific.net/ssp.265.672
Google Scholar
[9]
N.F. Timerbaev, A.R. Sadrtdinov, D.B. Prosvirnikov, A.A. Fomin, V.V. Stepanov, Application of software solutions for modeling and analysis of parameters of belt drive in engineering. IOP Conf. Series: Earth and Environmental Science, 87.8 (2017).
DOI: 10.1088/1755-1315/87/8/082047
Google Scholar
[10]
R.R. Safin, Study of the physical and energy properties of fuel granules based on a thermomodified wood raw material, Journal of engineering physics and thermophysics, 88.4 (2015) 958-961.
DOI: 10.1007/s10891-015-1270-y
Google Scholar
[11]
N.F. Timerbaev, D.F. Ziatdinova, R.G. Safin, A.R. Sadrtdinov, Gas purification system modeling in fatty acids removing from soapstock. Proceedings of 2017 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2017, 8076418.
DOI: 10.1109/icieam.2017.8076418
Google Scholar
[12]
Dutta, K. Piyush, D. Hui, Low-temperature and freeze-thaw durability of thick composites, Composites Part B: Engineering, 27.3-4 (1996) 371-379.
DOI: 10.1016/1359-8368(96)00007-8
Google Scholar
[13]
N.F. Timerbaev, A.R. Sadrtdinov, R.G. Safin, Software systems application for shafts strength analysis in mechanical engineering, Procedia Engineering, 206 (2017) 1376-1381.
DOI: 10.1016/j.proeng.2017.10.648
Google Scholar
[14]
V.G. Guseva, A.A. Fomin, A.R. Sadrtdinov, Dynamics of Stock Removal in Profile Milling Process by Shaped Tool. Procedia Engineering, 206 (2017) 279-285.
DOI: 10.1016/j.proeng.2017.10.474
Google Scholar
[15]
D.B. Prosvirnikov, E.I. Baigildeeva, A.R. Sadrtdinov A.A. Fomin, Modelling heat and mass transfer processes in capillary-porous materials at their grinding by pressure release. Proceedings of 2017 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2017, 8076443.
DOI: 10.1109/icieam.2017.8076443
Google Scholar
[16]
D.V. Tuncev, Z.G. Sattarova, I.M. Galiev, Multi-layer wood-polymer composite. Solid State Phenomena, 265 (2017) 47-52.
DOI: 10.4028/www.scientific.net/ssp.265.47
Google Scholar
[17]
R.G. Safin, Z.G. Sattarova, E.R. Khairullina, Technology of wood waste processing to obtain construction material. Solid State Phenomena, 265 (2017) 245-249.
DOI: 10.4028/www.scientific.net/ssp.265.245
Google Scholar
[18]
V.V. Stepanov, V.A. Saldaev, V.E. Tsvetkov, Composite Material for Railroad Tie. Solid State Phenomena, 265 (2017) 587-591.
DOI: 10.4028/www.scientific.net/ssp.265.587
Google Scholar
[19]
A.R. Sadrtdinov, IOP Conf. Ser.: Mater. Sci. Eng. 142 (2016) 012095.
Google Scholar
[20]
V.G. Gusev, A.A. Fomin,Multidimensional Model of Surface Waviness Treated by Shaping Cutter, Procedia Engineering, 206 (2017) 286-292.
DOI: 10.1016/j.proeng.2017.10.475
Google Scholar
[21]
I.A. Popov, A.V. Shchelchkov, Y.F. Gortyshov, High Temp, 55.4 (2017) 524.
Google Scholar
[22]
S.A. Isaev, Vortex heat transfer enhancement in the narrow plane-parallel channel with the oval-trench dimple of fixed depth and spot area, International Journal of Heat and Mass Transfer, 109 (2017) 40-62.
DOI: 10.1016/j.ijheatmasstransfer.2017.01.103
Google Scholar
[23]
I.V. Anisimova, Y.F. Gortyshov, V.N. Ignat'ev, Russ. Aeronaut, 59 (2016) 414.
Google Scholar
[24]
I.A. Popov, Cooling systems for electronic devices based on the ribbed heat pipe, Russian Aeronautics (Iz VUZ), 58.3 (2015) 309-314.
DOI: 10.3103/s1068799815030101
Google Scholar
[25]
M.V. Drapalyuk, IOP Conf. Ser.: Mater. Sci. Eng. 142 (2016) 012090.
Google Scholar
[26]
Yu.F. Gortyshov, J. Phys.: Conf. Ser. 891 (2017) 012001.
Google Scholar
[27]
Bajracharya, Rohan Muni, An overview of mechanical properties and durability of glass-fibre reinforced recycled mixed plastic waste composites, Materials & Design, 62 (2014) 98-112.
DOI: 10.1016/j.matdes.2014.04.081
Google Scholar
[28]
Biswas, Kaushik, Insulation materials for commercial buildings in North America: An assessment of lifetime energy and environmental impacts, Energy and Buildings, 112 (2016) 256-269.
DOI: 10.1016/j.enbuild.2015.12.013
Google Scholar
[29]
E. Moretti, E. Belloni, F. Agosti, Innovative mineral fiber insulation panels for buildings: Thermal and acoustic characterization Applied Energy, 169 (2016) 421-432.
DOI: 10.1016/j.apenergy.2016.02.048
Google Scholar
[30]
J. Sierra-Pérez, J. Boschmonart-Rives, X. Gabarrell, Environmental assessment of façade-building systems and thermal insulation materials for different climatic conditions Journal of Cleaner Production, 113 (2015) 102-113.
DOI: 10.1016/j.jclepro.2015.11.090
Google Scholar
[31]
B.C. Roberts, M.E. Webber, O.A. Ezekoye, Development of a multi-objective optimization tool for selecting thermal insulation materials in sustainable designs Energy and Buildings, 105 (2015) 358-367.
DOI: 10.1016/j.enbuild.2015.07.063
Google Scholar
[32]
Z. Sun, Z. Shen, S. Ma, X. Zhang, Novel application of glass fibers recovered from waste printed circuit boards as sound and thermal insulation material Journal of materials engineering and performance, 22.10 (2013) 3140-3146.
DOI: 10.1007/s11665-013-0587-y
Google Scholar
[33]
L.M. Matuana, N.M. Stark, J.P. Wacker, B.K. Brashaw, R.D. Bergman, The use of wood fibers as reinforcements in composites Environmental Entomology, 44.3 (2015) 890-897.
Google Scholar
[34]
H. Binici, O. Aksogan, Eco-friendly insulation material production with waste olive seeds, ground PVC and wood chips, Journal of Building Engineering, 5 (2016) 260-266.
DOI: 10.1016/j.jobe.2016.01.008
Google Scholar
[35]
H. Binici, O. Aksogan, C. Demirhan, Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials, Sustainable Cities and Society, 20 (2016) 17-26.
DOI: 10.1016/j.scs.2015.09.004
Google Scholar
[36]
J. Merle, New biobased foams from wood byproducts, Materials & Design, 91 (2016) 186-192.
DOI: 10.1016/j.matdes.2015.11.076
Google Scholar
[37]
P. Antoniadou, Integrated evaluation of the performance of composite cool thermal insulation materials, Energy Procedia, 78 (2015) 1581-1586.
DOI: 10.1016/j.egypro.2015.11.214
Google Scholar
[38]
V.A. Matsagar, Comparative performance of composite sandwich panels and non-composite panels under blast loading Materials and Structures, 49.1-2 (2016) 611-629.
DOI: 10.1617/s11527-015-0523-8
Google Scholar
[39]
F. Balo, Feasibility study of green, insulation materials including tall oil: Environmental, economical and thermal properties Energy and Buildings, 86 (2015) 161-175.
DOI: 10.1016/j.enbuild.2014.09.027
Google Scholar
[40]
M.I. Aranguren, N.E. Marcovich, M.A. Mosiewicki, Mechanical performance of polyurethane (PU)-based biocomposites, Biocomposites. (2015) 465-485.
DOI: 10.1016/b978-1-78242-373-7.00010-x
Google Scholar