Crystal Growth and Physical Properties of Lu(Al1-xTx)B4 (T = Fe, Cr) by Al-Self Flux

Article Preview

Abstract:

Crystals of the quaternary compounds α-Lu(Al1-xTx)B4 (T = Fe, Cr) (YCrB4-type, orthorhombic, Pbam), obtained from the nominal composition of Lu(Al1-xTx)B3, were grown by using Al flux mixed with T metal at 1773 K for 5 h under an Ar atmosphere. The maximum dimensions and morphology of the crystals obtained were about 0.7 mm × 0.5 mm for flake-type crystals of Lu(Al1-xCrx)B4 and about 5.2 mm × 0.2 mm for prism crystals of Lu(Al1-xFex)B4. The lattice constants determination and chemical analyses of Lu(Al1-xTx)B4 (T = Fe, Cr) compounds were carried out for Fe 0.5 - 10.0 at% and Cr 0.5 - 1.0 at%. The lattice constants and the unit lattice volume in Lu(Al1-xTx)B4 crystals decreased with increase of the concentration of Fe or Cr. The values of micro-Vickers hardness of Lu(Al1-xFex)B4 (x = 0.005 - 0.030) and Lu(Al1-xCrx)B4 (x = 0.005 - 0.010) samples are in the ranges of 16(2) - 20(3) GPa and 13(2) - 16(3) GPa, respectively. The hardness values showed a little increase as the solid solution of Fe or Cr was realized in Lu(Al1-xTx)B4, possibly because of distortion to the crystal structure. The magnetic susceptibility of as-grown Lu(Al0.995Fe0.005)B4 crystals for example, exhibited diamagnetic behavior with a small ferromagnetic component.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 289)

Pages:

120-126

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Okada, T. Shishido, T. Mori, K. Kudou, K. Iizumi, T. Lundström, and K. Nakajima, J. Alloys Comp., 408-412 (2006) 547-550.

DOI: 10.1016/j.jallcom.2005.01.078

Google Scholar

[2] S. I. Mikhalenko, Y. B. Kuz'ma, M. M. Korsukova, V. N. Gurin, Inorg. Mater., 16 (1980) 1325- 1328.

Google Scholar

[3] T. Mori, T. Shishido, K. Nakajima, S. Okada, K. Kudou, K. Kiefer, and K. Siemensmeyer, J. Physics: Conference Series, 200 (2010) 012127 (4 pp).

DOI: 10.1088/1742-6596/200/1/012127

Google Scholar

[4] P. Rogl and Nowotny, Monatsh. Chem., 105, 1082-1085 (1974).

Google Scholar

[5] S. Okada, K. Kudou, T. Tanaka, T. Shishido, V. N. Gurin, T. Lundström, J. Solid State Chem., 177 (2004) 547-550.

DOI: 10.1016/j.jssc.2003.01.002

Google Scholar

[6] S. Okada, T. Tanaka, A. Leithe-Jasper, Y. Uemichi, V. N. Gurin, J. Solid State Chem., 154, 49-53 (2000).

Google Scholar

[7] S. Okada, Y. Yu, T. Lundström, K. Kudou, T. Tanaka, Jpn. J. Appl. Phys., 35 (1996) 4718-4723.

Google Scholar

[8] T. Mori, T. Shishido, K. Nakajima, S. Okada, K. Kudou, K. Kiefer, K. Siemensmeyer, J. Physics: Conference Series, 200 (2010) 012127 1-4.

DOI: 10.1088/1742-6596/200/1/012127

Google Scholar

[9] I. Higashi, M. Kobayashi, S. Okada, K. Hamano, T. Lundström, J. Crystal Growth, 128, (1993) 1113-1119.

Google Scholar

[10] K. Kudou, S. Okada, T. Mori, K. Iizumi, T. Shishido, T. Tanaka, I. Higashi, K. Nakajima, P. Rogl, Y. B. Andersson, T. Lundström, Jpn. J. Appl. Phys., 41 (2002) L.928-L.930.

DOI: 10.1143/jjap.41.l928

Google Scholar

[11] S. Okada, T. Tanaka, A. Sato, T. Shishido, K. Kudou, K. Nakajima, T. Lundström, J. Alloys Comp., 395 (2005) 231-235.

DOI: 10.1016/j.jallcom.2004.10.057

Google Scholar

[12] T. Mori, I. Kuzmych-Ianchuk, K. Yubuta, T. Shishido, S. Okada, K. Kodou, J. Appl. Physics, 11, 07E127 1-3 (2012).

Google Scholar

[13] J. W. Simonson and S. J. Poon, J. Alloy Comp., 504, 265-272 (2010).

Google Scholar

[14] S. Lassoued, R. Gautier, A. Boutarfaia, J.-F. Halet, J. Organomet. Chem., 695, 987-993 (2010).

Google Scholar

[15] T. Mori, JOM, 68, 2673-2679 (2016).

Google Scholar

[16] X. J. Wang, T. Mori, I. Kuzmych-Ianchuk, Y. Michiue, K. Yubuta, T. Shishido, Y. Grin, S. Okada, and D. G. Cahill, APL Mater., 2, 046113 (2014).

DOI: 10.1063/1.4871797

Google Scholar

[17] F. Ahmed, N. Tsujii and T. Mori, J. Mater. Chem. A, 5, 7545-7554 (2017).

Google Scholar

[18] H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose, N. Tsujii, and T. Mori, Materials Today Physics, 3, 85-92 (2017).

DOI: 10.1016/j.mtphys.2017.12.006

Google Scholar

[19] T. Mori, Small, 13, 1702013-1 1702013-10 (2017).

Google Scholar

[20] V. I. Matkovich ed., Boron and Refractory Borides,, Springer-Verlag Berlin Heidelberg New York 1977, pp.6-292.

DOI: 10.1002/bbpc.19780821026

Google Scholar

[21] T. Yamasaki, K. Kouzu, S. Okada, K. Yubuta, A. Nomura, Q. Guo, T. Shishido, A. Yoshikawa, T. Mori, P. Rogl, 19th International Symposium on Boron, Borides and Related Materials (ISBB2017), September 3 to 8, 2017, in Freiburg, Germany, p.62.

Google Scholar

[22] S. Okada, K. Kudou, Y. Yu and T. Lundström, Jpn. J. Appl. Phys., 33 (1994) 2663-2666.

Google Scholar

[23] G. V. Samsonov, I. M. Vinitskii, Handbook of Refractory Compounds,, NiSo Tsushinsha (RSS) (1976) p.24.

Google Scholar

[24] T. Mori, H. Borrmann, S. Okada, K. Kudou, A. Leithe-Jasper, U. Burkhardt, Y. Grin, Phys. Rev., B 76, 064404 1-10 (2007).

Google Scholar