Isoelectronic Modifications of Thermoelectric Properties in Fe2V1-xNbxAl

Article Preview

Abstract:

Substituting V/Nb in Fe2VAl causes an initial increase of the unit cell volume as well as an increaseof the structural disorder. Although V and Nb are isoelectronically, slight changes of the electronicdensity of states N(E) right at the Fermi energy are obtained. While for a 10 % substitution of V/Nbthe absolute value of N(EF) keeps almost constant, the slope of N(E) grows. As a result, the Seebeckeffect grows in comparsion to the starting material Fe2VAl, reaching values of about 100 μ V/K at roomtemperature. The latter is one of the largest found so far for p-type substituted Fe2VAl.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 289)

Pages:

141-147

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Schwall and B. Balke: Phys. Chem. Chem. Phys. 15, (2013), p.1868.

Google Scholar

[2] M. Mikami, Y. Kinemuchi, K. Ozaki, Y. Terazawa, and T. Takeuchi, Journal of Applied Physics 111, 093710 (2012).

DOI: 10.1063/1.4710990

Google Scholar

[3] T. Graf, C. Felser, and S. S. Parkin: Progress in Solid State Chemistry 39, (2011), p.1.

Google Scholar

[4] M. Weinert and R. E. Watson: Phys. Rev. B 58, (1998), p.9732.

Google Scholar

[5] Y. Nishino, H. Kato, M. Kato, and U. Mizutani: Phys. Rev. B 63, (2001), p.233303.

Google Scholar

[6] I. Knapp, B. Budinska, D. Milosavljevic, P. Heinrich, S. Khmelevskyi, R. Moser, R. Podloucky, P. Prenninger, and E. Bauer: Phys. Rev. B 96, (2017), p.045204.

Google Scholar

[7] Y. Nishino, S. Deguchi, and U. Mizutani, Phys. Rev. B 74, 115115 (2006).

Google Scholar

[8] H. Kato, M. Kato, Y. Nishino, U. Mizutani, and S. Asano, Journal of the Japan Institute of Metals 65, 652 (2001).

Google Scholar

[9] K. Renard, A. Mori, Y. Yamada, S. Tanaka, H. Miyazaki, and Y. Nishino, Journal of Applied Physics 115, 033707 (2014).

Google Scholar

[10] C. S. Lue, C. F. Chen, J. Y. Lin, Y. T. Yu, and Y. K. Kuo, Phys. Rev. B 75, 064204 (2007).

Google Scholar

[11] M. Mikami and K. Kobayashi, Journal of Alloys and Compounds 466, 530 (2008).

Google Scholar

[12] M. Mikami, S. Tanaka, and K. Kobayashi, Journal of Alloys and Compounds 484, 444 (2009).

Google Scholar

[13] M. Mikami, M. Inukai, H. Miyazaki, and Y. Nishino, Journal of Electronic Materials 45, 1284 (2016).

Google Scholar

[14] P.-C. Wei, T.-S. Huang, S.-W. Lin, G.-Y. Guo, and Y.-Y. Chen, Journal of Applied Physics 118, 165102 (2015).

Google Scholar

[15] H. Al-Yamani and B. Hamad, Journal of Electronic Materials 45, 1101 (2016).

Google Scholar

[16] Y. Wang and J. P. Perdew: Phys. Rev. B 44, (1991), p.13298.

Google Scholar

[17] I. A. Abrikosov and H. L. Skriver: Phys. Rev. B 47, (1993), p.16532.

Google Scholar

[18] A. Ruban and H. Skriver: Computational Materials Science 15, (1999), p.119.

Google Scholar

[19] S. Khmelevskyi, E. Simon, and L. Szunyogh: Phys. Rev. B 91, (2015), p.094432.

Google Scholar

[20] S. Khmelevskyi: Phys. Rev. B 94, (2016), p.024420.

Google Scholar

[21] I. Turek, V. Drchal, J. Kudrnovsky, M. Sob, and P. Weinberger, Electronic structure of disordered alloys, surfaces and interfaces (2013).

DOI: 10.1007/978-1-4615-6255-9

Google Scholar

[22] E. Bauer, S. Berger, C. Paul, M. D. Mea, G. Hilscher, H. Michor, M. Reissner, W. Steiner, A. Grytsiv, P. Rogl: Phys. Rev. B 66, (2002), p.214421.

Google Scholar

[23] H. J. Goldsmid and J. W. Sharp: Journal of Electronic Materials 28, (1999), p.869.

Google Scholar

[24] Y. Kawaharada, K. Kurosaki, and S. Yamanaka, Journal of Alloys and Compounds 349, 37 (2003).

Google Scholar