Magnetic, Magnetocaloric and Magnetoresonance Properties of (1-x)La0.7Sr0.3MnO3/xGeO2 (x=0, 0.15)

Article Preview

Abstract:

0.85La0.7Sr0.3MnO3/0.15GeO2 composite material and pure La0.7Sr0.3MnO3 were investigated by X-ray diffraction, scanning electron microscopy, magnetometry and magnetic resonance methods. It was observed that both samples demonstrate the ferromagnetic properties, while the absolute value of the magnetization, the magnetic entropy change and the magnetic ordering temperature decrease in composite in comparison with pure La0.7Sr0.3MnO3. The magnetic resonance spectra of investigated (1-x)La0.7Sr0.3MnO3/xGeO2 (x=0, 0.15) can be attributed to the superposition of magnetic resonance spectra from magnetically anisotropic particles with different orientations.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Yu.V. Kabirov, V.G. Gavrilyachenko, A.S. Bogatin, et al., Tech. Phys. Lett. 42 (2016) 278-279.

Google Scholar

[2] Yu.V. Kabirov, V. G. Gavrilyachenko, A.S. Bogatin, et al., Phys. Solid State 60 (2018) 60–63.

Google Scholar

[3] Yu.V. Kabirov, V.G. Gavrilyachenko, A.S. Bogatin, et al. Phys. Solid State 57 (2015) 14-17.

Google Scholar

[4] M.S. Anwar, F. Ahmed, R. Danish, B.H. Koo, Ceramics International 41 (2015) 631-637.

Google Scholar

[5] M. Kumaresavanji, C. T. Sousa, A. Pires, et al., Appl. Phys. Lett. 105 (2014) 083110 1-5.

Google Scholar

[6] M.C. Martin, G. Shirane, Y. Endoh, et al., PRB 53 (1996) 14285.

Google Scholar

[7] A. Urushibara, Y. Moritomo, T. Arima, et al., PRB 51 (1995) 14103.

Google Scholar

[8] T.P. Gavrilova, I.F. Gilmutdinov, J.A. Deeva. et. al. JMMM 467 (2018) 49-57.

Google Scholar

[9] D. Merkulov, A. Badelin, S. Estemirova, et al., Acta physica polonica A 127 (2015) 248-250.

Google Scholar

[10] A.N. Ulyanov, D. S. Yang, N. Chau, et al. J. Appl. Phys. 103 (2008) 07F722 1-3.

Google Scholar

[11] N. Kallel, G. Dezanneau, J. Dhahri, et al., JMMM 261 (2003) 56–65.

Google Scholar

[12] I.O. Troyanchuk, M.V. Bushinsky, H. Szymczak, et al., Eur. Phys. J. B 28 (2002) 75-80.

Google Scholar

[13] J.R. Gebhardt, S. Roy, N. Ali, J. Appl. Phys. 85 (1999) 5390-5392.

Google Scholar

[14] N. Volkov, N. Mikhashenok, K. Sablina, et al., Solid State Phenom. 233-234 (2015) 129.

Google Scholar

[15] H.L. Ju, H. Sohn, JMMM 167, 2041 (1997).

Google Scholar

[16] A.A. Belik, Y. Matsushita, Y. Katsuya, et al., PRB 84(9) (2011) 094438.

Google Scholar

[17] A. Trokiner, S. Verkhovskii, Z. Volkova, et al., PRB 93(17) (2016) 174413.

Google Scholar

[18] A. Furrer, A. Podlesnyak, E. Pomjakushina, and V. Pomjakushin, PRB 95 (2017) 104414 1-9.

Google Scholar

[19] E. Brück, J. Phys. D: Appl. Phys. 38 (2005) R381-R391.

Google Scholar

[20] L. Caron, Z.Q. Ou, T.T. Nguyen, et al., JMMM 321 (2009) 3559-3566.

Google Scholar

[21] P.T. Phong, N.V. Dang, L.V. Bau, et al., J. Alloys and Compounds 698 (2017) 451-459.

Google Scholar

[22] N. Kallel, S. Kallel, A. Hagaza, et al., Physica B 404 (2009) 285-288.

DOI: 10.1016/j.physb.2008.10.049

Google Scholar

[23] L. E. Hueso, P. Sande, D. R. Miguens, et al., J. Appl. Phys. 91 (2002) 9943-9947.

Google Scholar

[24] G.M. Zhidomirov, Interpretation of complex EPR spectra, Amerind Pub. Co., (1985).

Google Scholar

[25] V. Dyakonov, A. Slawska-Waniewska, N. Nedelko, et al, JMMM 322 (2010) 3072-3079.

Google Scholar