Longitudinal Spin Fluctuations and Magnetic Ordering Temperature in Metals: First-Principle Modeling and Phase Space Integration Measure

Article Preview

Abstract:

In magnetically ordered metals the magnitude of the local atomic moment become temperature dependent. To deal with this problem on the ab-initio level one need to employ a specific methodology for calculation of the electronic structure that takes into the account the magnetic disorder effects. In addition one needs to setup a special statistical models allowing simultaneously for ab-initio mapping and for the variation of the local spin magnitude. To this end here we discuss and employ methodology that is based on the Disordered Local Moment (DLM) formalism, spin-constraint Local Spin Density Approximation (LSDA) and Lichtenstein theorem for calculation of the inter-site exchange interactions. An extended classical Heisenberg Hamiltonian used for mapping allows for the variation of the lattice site spin magnitude. We consider here three representative canonical transition metals ferromagnets hcp Gd, bcc Fe and fcc Ni with quite a different character of the magnetic moment localization and illustrate the relative importance of the longitudinal spin fluctuations and the magnetic disorder induced electronic structure reconstruction. We use recently introduced linear measure [1] for integration over the longitudinal spin component in the classical configurational spin space.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 289)

Pages:

192-197

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Khmelevskyi, J. of Magn. Magn. Mater. 461, 14 (2018).

Google Scholar

[2] I. Turek, J. Kudrnovský, V. Drchal, and P. Bruno, Phil. Mag. 86, 12 (2006).

Google Scholar

[3] U. Nowak: in Handbook of magnetism and advanced magnetic materials 2, 858 (ed. by H. Kronmüller, Chichester: Wiley, 2007).

Google Scholar

[4] R. Moreno et al., Phys. Rev. B 94, 104433 (2016).

Google Scholar

[5] T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985).

Google Scholar

[6] V. Heine, J. H. Samson, and C. M. M. Nex, J. Phys. F: Met. Phys. 11, 2645 (1981).

Google Scholar

[7] T. Moriya and Y. Takahashi, J. Phys. Soc. Japan. 45, 397 (1978).

Google Scholar

[8] M. Uhl, and J. Kübler, Phys. Rev. Lett. 77, 334 (1996).

Google Scholar

[9] N.M. Rosengaard and B. Johansson, Phys. Rev. B 55, 14975 (1997).

Google Scholar

[10] B.L. Gyorffy et al., J. Phys. F: Met. Phys. 15, 1337 (1985).

Google Scholar

[11] A.I. Liechtenstein, M.I. Katsnelson, V.P. Antropov, and V.A. Gubanov, J. Magn. Magn. Mater. 67, 65 (1987).

Google Scholar

[12] A.V. Ruban, S. Khmelevskyi, P. Mohn, and B. Johansson, Phys. Rev. B 76, 014420 (2007).

Google Scholar

[13] A.L. Wysocki, J.K. Glasbrenner, and K.D. Belashchenko, Phys. Rev. B 78, 184419 (2008).

Google Scholar

[14] F. Dietermann et al., J. of Magn. Magn. Mater 324, 2693 (2012).

Google Scholar

[15] A. V. Ruban, A. B. Belonoshko, and N. V. Skorodumova, Phys. Rev. B 87, 014405 (2013).

Google Scholar

[16] S. Khmelevskyi, Phys. Rev. B 94, 024420 (2016).

Google Scholar

[17] F. Pan, J. Chico, A. Delin, A. Bargmann, and L. Bergqist, Phys. Rev. B 95, 184432 (2017).

Google Scholar

[18] M. Månson, Phys. Rev. B 12, 400 (1975).

Google Scholar

[19] J. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

Google Scholar

[20] A. V. Ruban and H. L. Skriver, Comp. Mater. Sci. 15, 199 (1999).

Google Scholar

[21] A. V. Ruban, S. I. Simak, S. Shallcross, and H. Skriver, Phys. Rev. B 67, 214302 (2003).

Google Scholar

[22] S. Khmelevskyi et al., J. Phys.: Condens. Matter 19, 326218 (2007).

Google Scholar

[23] M. Pajda et al., Phys. Rev. B 64, 174402 (2001).

Google Scholar

[24] S. Khmelevskyi, and P. Mohn, Phys. Rev. B 71, 144423 (2005).

Google Scholar

[25] S. Khmelevskyi et al., Phys. Rev. B 72, 064510 (2005).

Google Scholar

[26] E.P. Wohlfarth, in Ferromagnetic Materials, ed. by E.P. Wholfarth (North-Holland, Amsterdam, 1980 p.1).

Google Scholar