The Spin-Disorder Resistivity: The Disordered Local Moment Approach

Article Preview

Abstract:

The spin-disorder resistivity (SDR) of a broad range of magneticmaterials, both ordered and disordered, is reviewed.We identify the SDR at the critical temperature with the residualresistivity of the corresponding system evaluated in the frameworkof the disordered local moment (DLM) model.The underlying electronic structure is determined in the frameworkof the tight-binding linear muffin-tin orbital method which employsthe coherent potential approximation to describe the DLM stateand chemical disorder.The DLM fixed-spin moment method is used in the case when the DLMmoment collapses.The Kubo-Greenwood approach is employed to estimate the resistivityof the DLM state.Formalism is applied to Fe and Ni and its alloys, Heusler alloys,and ordered ferromagnetic and antiferromagnetic alloys.Finally, the SDR of the Earth's core will be studied using thesame formalism.Calculations are compared with available experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 289)

Pages:

185-191

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.G. de Gennes and J. Friedel: J. Phys. Chem. Solids iVol. 4 (1958), p.71.

Google Scholar

[2] J.M. Ziman: Electrons and Phonons (Oxford 1960).

Google Scholar

[3] J. Kudrnovský, V. Drchal, I. Turek, S. Khmelevskyi, J.K. Glasbrenner, and K.D. Belashchenko: Phys. Rev. B Vol. 86 (2012), p.144423.

DOI: 10.1103/physrevb.86.144423

Google Scholar

[4] V. Drchal, J. Kudrnovský, D. Wagenknecht, I. Turek, and S. Khmelevskyi: Phys. Rev. B Vol. 96 (2017), p.024432.

Google Scholar

[5] B.L. Gyorffy, A.J. Pindor, J. Staunton, G.M. Stocks, and H. Winter: J. Phys. F: Metal Phys. Vol. 15 (1985), p.1337.

Google Scholar

[6] J. Hubbard, Phys. Rev. Vol. 20 (1979), p.4584.

Google Scholar

[7] I. Turek, V. Drchal, J. Kudrnovský, M. Šob, and P. Weinberger: Electronic Structure of Disordered Alloys, Surfaces and Interfaces (Kluwer, Boston 1997).

DOI: 10.1007/978-1-4615-6255-9

Google Scholar

[8] S.H. Vosko, L. Wilk, and M. Nusair: Can. J. Phys. Vol. 58 (1980), p.1200.

Google Scholar

[9] A.V. Ruban, S.K. Khmelevskyi, P. Mohn, and B. Johansson: Phys. Rev. B Vol. 75 (2007), p.054402.

Google Scholar

[10] V.L. Moruzzi, P.M. Marcus, K. Schwarz, and P. Mohn: Phys. Rev. B Vol. 34, (1986), p.1784.

Google Scholar

[11] S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton: Phys. Rev. B Vol. 57 (1998), p.1505.

Google Scholar

[12] I. Turek, J. Kudrnovský, V. Drchal, L. Szunyogh, and P. Weinberger: Phys. Rev. B Vol. 65 (2002), p.125101.

Google Scholar

[13] A. Wysocki, K.D. Belashchenko, and J.P. Velev: J. Appl. Phys. Vol. 101 (2007), p. 09G506.

Google Scholar

[14] R.J. Weiss and K.J. Tauer, Phys. Rev. Vol. 102 (1956), p.1490.

Google Scholar

[15] H. Ehteshami and P.A. Korzhavyi, Phys. Rev. B Vol. 96 (2017), p.224406.

Google Scholar

[16] Note that M = gµBS, where S is the spin moment, and we assume the ideal value of Landé factor g=2. Finally, µB is Bohr magneton.

Google Scholar

[17] S. Khmelevskyi, J. Magn. Magnet. Mater. Vol. 461 (2018), p.14.

Google Scholar

[18] R.J. Weiss and A.S. Marotta, J. Phys. Chem. Solids Vol. 9 (1959), p.302.

Google Scholar

[19] S.U. Jen and S.S. Liou, J. Appl. Phys. Vol. 85 (1999), p.8217.

Google Scholar

[20] Y. Nishino, S. Inoue, S. Asano, and N. Kawamiya, Phys. Rev. B Vol.48 (1993), p.13607[21] W.H. Schreiner, D.E. Brandao, F. Ogiba, and J.V. Kunzler, J. Phys. Chem. Solids Vol. 43 (1982), p.777.

Google Scholar

[22] M.J. Otto, R.A.M van Woerden, P.J. van der Valk, J. Wijngaard, C.F. van Bruggen, and C. Haas, J. Phys.: Condens. Matter Vol. 1 (1989), p.2351.

Google Scholar

[23] S. Khmelevskyi and P. Mohn, Appl. Phys. Lett. Vol. 93 (2008), p.162503.

Google Scholar

[24] W. Bindloss, Phys. Rev. Vol. 165 (1968), p.725.

Google Scholar

[25] M. Pozzo and D. Alfè, SpringerPlus Vol. 5 (2016), p.256.

Google Scholar

[26] J.K. Glasbrenner, B.S. Pujari, and K.D. Belashchenko, Phys. Rev. B Vol. 89 (2014), p.174408.

Google Scholar