DFT Calculations to Study Hydrogen Localization and Diffusion in Disordered Bcc Ti-V-Cr Alloys

Article Preview

Abstract:

Here we report on the results of our theoretical study of hydrogen localization and motion in disordered bcc Ti-V-Cr alloys. The calculations have been carried out within a DFT supercell approach for a certain composition, namely Ti0.33V0.27Cr0.4 for H/M = 1/32. It was found that hydrogen is localized in highly distorted tetrahedral sites formed by different metal species. H atoms are displaced towards titanium. The estimation of the hydrogen diffusion parameters provides the activation energy value of 0.126 eV and the diffusion coefficient at 294 K equal to 1.9 10-10 m/s2 that is in good agreement with available experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 289)

Pages:

205-211

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Miraglia, P. De Rango, S. Rivoirard, D. Fruchart, J. Charbonnier, N. Skryabina, Hydrogen sorption properties of compounds based on BCC Ti1-xV1-yCr1+x+y alloys, J. Alloys Compd. 536 (2012) 1–6.

DOI: 10.1016/j.jallcom.2012.05.008

Google Scholar

[2] S. Nachev, P. De Rango, N. Skryabina, A. Skachkov, V. Aptukov, D. Fruchart, P. Marty, Mechanical behavior of highly reactive nanostructured MgH2, Int. J. Hydrogen Energy. 40 (2015) 17065–17074.

DOI: 10.1016/j.ijhydene.2015.05.022

Google Scholar

[3] K. Klyukin, M.G. Shelyapina, D. Fruchart, DFT calculations of hydrogen diffusion and phase transformations in magnesium, J. Alloys Compd. 644 (2015) 371–377.

DOI: 10.1016/j.jallcom.2015.05.039

Google Scholar

[4] A.V. Vyvodtceva, M.G. Shelyapina, A.F. Privalov, Y.S. Chernyshev, D. Fruchart, 1H NMR study of hydrogen self-diffusion in ternary Ti-V-Cr alloys, J. Alloys Compd. 614 (2014) 364–367.

DOI: 10.1016/j.jallcom.2014.06.023

Google Scholar

[5] J. Völkl, G. Alefeld, Diffusion of hydrogen in metals, in: G. Alefeld, J. Völkl (Eds.), Hydrog. Met. I Basic Prop., Springer Berlin Heidelberg, Berlin, Heidelberg, 1978: p.321–348.

DOI: 10.1007/3540087052_51

Google Scholar

[6] H. Wipf, Diffusion of hydrogen in metals, in: H. Wipf (Ed.), Hydrog. Met. III Prop. Appl., Springer Berlin Heidelberg, Berlin, Heidelberg, 1997: p.51–91.

Google Scholar

[7] M.G. Shelyapina, A. V. Vyvodtceva, K.A. Klyukin, O.O. Bavrina, Y.S. Chernyshev, A.F. Privalov, D. Fruchart, Hydrogen diffusion in metal-hydrogen systems via NMR and DFT, Int. J. Hydrogen Energy. 40 (2015) 17038–17050.

DOI: 10.1016/j.ijhydene.2015.05.176

Google Scholar

[8] S. Miraglia, D. Fruchart, N. Skryabina, M. Shelyapina, B. Ouladiaf, E.K. Hlil, P. de Rango, J. Charbonnier, Hydrogen-induced structural transformation in TiV0.8Cr1.2 studied by in situ neutron diffraction, J. Alloys Compd. 442 (2007) 49–54.

DOI: 10.1016/j.jallcom.2006.10.168

Google Scholar

[9] M.G. Shelyapina, V.S. Kasperovich, N.E. Skryabina, D. Fruchart, Ab initio calculations of the stability of disordered Ti-V-Cr solid solutions and their hydrides, Phys. Solid State. 49 (2007) 399–402.

DOI: 10.1134/s1063783407030018

Google Scholar

[10] O.O. Bavrina, M.G. Shelyapina, K.A. Klyukin, D. Fruchart, First-principle modelling of hydrogen site solubility and diffusion in disordered Ti-V-Cr alloys, Int. J. Hydrogen Energy. (2018).

DOI: 10.1016/j.ijhydene.2018.07.128

Google Scholar

[11] K. Binder, Ordering of the face-centered-cubic lattice with nearest-neighbor interaction, Phys. Rev. Lett. 45 (1980) 811–814.

DOI: 10.1103/physrevlett.45.811

Google Scholar

[12] M.G. Shelyapina, D. Fruchart, P. De Rango, J. Charbonnier, S. Rivoirard, N. Skryabina, S. Miraglia, E.K. Hlil, P. Wolfers, First-principles investigation of the stability of the Ti-V-Cr ternary alloys and their related hydrides, AIP Conf. Proc. 837 (2006) 104–111.

DOI: 10.1063/1.2213065

Google Scholar

[13] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[14] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter. 21 (2009) 395502-1–19.

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[15] S. Baroni, P. Giannozzi, A. Testa, Green's-function approach to linear response in solids, Phys. Rev. Lett. 58 (1987) 1861–1864.

DOI: 10.1103/physrevlett.58.1861

Google Scholar

[16] H. Jonsson, G. Mills, K.W. Jacobsen, Classical and quantum dynamics in condensed phase simulations, in: B.J. Berne, G. Ciccotti, D.F. Coker (Eds.), Nudged Elastic Band Method Find. Minim. Energy Paths Transitions, World Scientific Publishing, Singapore, 1998: p.385–404.

DOI: 10.1142/9789812839664_0016

Google Scholar

[17] G. Henkelman, H. Jónsson, P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Phys. Condens. Matter. 21 (2000) 395502-1–19.

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[18] T.J. Frankcombe, The importance of vibrations in modelling complex metal hydrides, J. Alloys Compd. 446–447 (2007) 455–458.

DOI: 10.1016/j.jallcom.2007.01.050

Google Scholar

[19] R.C. Brouwer, R. Griessen, Heat of solution and site energies of hydrogen in disordered transition-metal alloys, Phys. Rev. B. 40 (1989) 1481–1494.

DOI: 10.1103/physrevb.40.1481

Google Scholar

[20] V.S. Kasperovich, M.G. Shelyapina, B. Khar'Kov, I. Rykov, V. Osipov, E. Kurenkova, A. V. Ievlev, N.E. Skryabina, D. Fruchart, S. Miraglia, P. De Rango, NMR study of metal-hydrogen systems for hydrogen storage, J. Alloys Compd. 509 (2011) S804–S808.

DOI: 10.1016/j.jallcom.2010.10.195

Google Scholar