Small Angle Neutron Scattering Study of a Gehlenite-Based Ceramic Fabricated from Industrial Waste

Article Preview

Abstract:

This paper presents a small angle neutron scattering (SANS) study of a novel porous gehlenite-based ceramic, synthesised from a homogeneous powder mixture of soda-lime-silicate (SLS) glass, α-alumina, calcite and calcium fluoride via solid-state sintering at 1200 °C. The products of sintering at single temperatures from 600 to 1200 °C are examined by X-ray diffraction (XRD). Sintering of the mixture below 1200 °C forms two intermediate phases (Na2CaSi3O8 and Ca4Si2O7F2). Nepheline and α-alumina are minor phases in the gehlenite-based ceramic fabricated through sintering at 1200 °C. The microstructure of the gehlenite-based ceramic is investigated using field-emission scanning electron microscopy (FESEM) and SANS at the Australian Centre for Neutron Scattering. This study also evaluated the specific surface area of the gehlenite-based ceramic (~3.0 m2 cm–3) from quantitative analysis of SANS data.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 290)

Pages:

22-28

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. W. Loy, A. E. Whitten, L. de Campo, D. Appadoo, N. Zainuddin, K. A. Matori, C. Rehm, A. Sokolova, C. Wang, Q. Xia, T. A. Whittle, S. Schmid, Investigation of siliceous hydrogel phase formation in glass-ionomer cement paste, Physica B (2017) In press.

DOI: 10.1016/j.physb.2017.12.018

Google Scholar

[2] S. Roohani-Esfahani, Y. J. No, Z. Lu, P. Y. Ng, Y. Chen, J. Shi, N. J. Pavlos, H. Zreiqat, A bioceramic with enhanced osteogenic properties to regulate the function of osteoblastic and osteocalastic cells for bone for bone tissue regeneration, Biomed. Mater. 11 (2016) 035018.

DOI: 10.1088/1748-6041/11/3/035018

Google Scholar

[3] D. Jia, D. Kim, W. M. Kriven, Sintering behavior of gehlenite. Part I: Self-forming, macro-/mesoporous gehlenite – Pore-forming mechanism, microstructure, mechanical, and physical properties, J. Am. Ceram. Soc. 90(6) (2007) 1760-1773.

DOI: 10.1111/j.1551-2916.2007.01704.x

Google Scholar

[4] M. Rafienia, A. Bigham, A. Saudi, S. Rahmati, Gehlenite nanobioceramic: Sol-gel synthesis, characterization, and in vitro assessment of its bioactivity, Mater. Lett. 225 (2018) 89-92.

DOI: 10.1016/j.matlet.2018.04.094

Google Scholar

[5] K. A. Matori, C. W. Loy, M. Hashim, I. Ismail, M. H. M. Zaid, Phase transformations of α-alumina made from waste aluminum via a precipitation technique, Int. J. Mol. Sci. 13 (2012) 16812-16821.

DOI: 10.3390/ijms131216812

Google Scholar

[6] C. W. Loy, K. A. Matori, W. F. Lim, S. Schmid, N. Zainuddin, Z. A. Wahab, Z. N. Alassan, M. H. M. Zaid, Effects of calcination on the crystallography and nonbiogenic aragonite formation of ark clam shell under ambient condition, Adv. Mater. Sci. Eng. (2016) 2914368.

DOI: 10.1155/2016/2914368

Google Scholar

[7] D. P. Mukherjee, S. K. Das, Effects of nano silica on synthesis and properties of glass ceramics in SiO2-Al2O3-CaO-CaF2 glass system: A comparison, J. Non-Cryst. Solids 368 (2013) 98-104.

DOI: 10.1016/j.jnoncrysol.2013.03.012

Google Scholar

[8] A Sokolova, J Christoforidis, A Eltobaji, J. Barnes, F. Darmann, A. E. Whitten, L. de Campo, BILBY: time-of-flight small angle scattering instrument, Neutron News 27(2) (2016) 9-13.

DOI: 10.1080/10448632.2016.1163980

Google Scholar

[9] C. W. Loy, K. A. Matori, N. Zainuddin, A. E. Whitten, C. Rehm, L. de Campo, A. Sokolova, S. Schmid, Crystallographic characterization of fluorapatite glass-ceramics synthesized from industrial waste, Powder Diffr. 32(S2) (2017) S61-S65.

DOI: 10.1017/s088571561700094x

Google Scholar

[10] O. Arnold, J. C. Bilheux, J. M. Borreguero, A. Buts, S. I. Campbell, L. Chapon, M. Doucet, N. Draper, R. Ferraz Leal, M. A. Gigg, V. E. Lynch, A. Markvardsen, D. J. Mikkelson, R. L. Mikkelson, R. Miller, K. Palmen, P. Parker, G. Passos, T. G. Perring, P. F. Peterson, S. Ren, M. A. Reuter, A. T. Savici, J. W. Taylor, R. J. Taylor, R. Tolchenov, W. Zhou, J. Zikovsky, Mantid – data analysis and visualization package for neutron scattering and µSR experiments, Nuclear Instruments and Methods in Physics Research A 764 (2014) 156-166.

DOI: 10.1016/j.nima.2014.07.029

Google Scholar

[11] R. P. Sear, Continuity of the nucleation of bulk and surface phases, the Journal of Chemical Physics. 129 (2008) 164510.

DOI: 10.1063/1.2992160

Google Scholar

[12] N. V. Chukanov, A. D. Chervonnyi, Infrared spectroscopy of minerals and related compounds, Springer Mineralogy, Switzerland, (2016).

DOI: 10.1007/978-3-319-25349-7

Google Scholar

[13] S. H. Kim, S. Han, H. Ha, J. Y. Byun, M. Kim, Support-shape dependent catalytic activity in Pt/alumina systems using ultra-small (USANS) and small angle neutron scattering (SANS), Catal. Today 260 (2016) 46-54.

DOI: 10.1016/j.cattod.2015.05.031

Google Scholar

[14] C. J. Garvey, M. Strobl, A. Percot, J. Saroun, J. Haug, W. Vyverman, V. A. Chepurnov, J. M. Ferris, Small angle neutron scattering on an absolute intensity scale and the internal surface of diatom frustules from three species of differing morphologies, Eur. Biophys. J. 42(5) (2013) 395-404.

DOI: 10.1007/s00249-013-0889-x

Google Scholar