[1]
Lashgari, H. R., Zangeneh, S., Shahmir, H., Saghafi, M., & Emamy, M. (2010). Heat treatment effect on the microstructure, tensile properties and dry sliding wear behavior of A356–10% B4C cast composites. Materials & Design, 31(9), 4414-4422. https://doi.org/10.1016/j.matdes.2010.04.034.
DOI: 10.1016/j.matdes.2010.04.034
Google Scholar
[2]
Kumar, A., & Rai, R. N. (2018, June). Fabrication, Microstructure and Mechanical Properties of Boron Carbide (B4Cp) Reinforced Aluminum Metal Matrix Composite-A Review. In IOP Conference Series: Materials Science and Engineering (Vol. 377, No. 1, p.012092). IOP Publishing. https://doi.org/10.1088/1757-899x/377/1/012092.
DOI: 10.1088/1757-899x/377/1/012092
Google Scholar
[3]
Deng, X., & Chawla, N. (2006). Modeling the effect of particle clustering on the mechanical behavior of SiC particle reinforced Al matrix composites. Journal of Materials Science, 41(17), 5731-5734. https://doi.org/10.1007/s10853-006-0100-1.
DOI: 10.1007/s10853-006-0100-1
Google Scholar
[4]
Hashim, J., Looney, L., & Hashmi, M. S. J. (2002). Particle distribution in cast metal matrix composites-Part I. Journal of Materials Processing Technology, 123(2), 251-257. https://doi.org/10.1016/s0924-0136(02)00099-7.
DOI: 10.1016/s0924-0136(02)00098-5
Google Scholar
[5]
Asthana, R., & Tewari, S. N. (1993). The engulfment of foreign particles by a freezing interface. Journal of materials science, 28(20), 5414-5425. https://doi.org/10.1007/bf00367810.
DOI: 10.1007/bf00367810
Google Scholar
[6]
Williams, J. C., & Starke Jr, E. A. (2003). Progress in structural materials for aerospace systems1. Acta Materialia, 51(19), 5775-5799.
DOI: 10.1016/j.actamat.2003.08.023
Google Scholar
[7]
Sha, G., & Cerezo, A. (2004). Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050). Acta Materialia, 52(15), 4503-4516. https://doi.org/10.1016/j.actamat.2004.06.025.
DOI: 10.1016/j.actamat.2004.06.025
Google Scholar
[8]
Sobolev, V.V., & Usherenko, S.M. (2006). Shock-wave initiation of nuclear transmutation of chemical elements. Journal de Physique IV (Proceedings), 134, 977-982. https://doi.org/10.1051/jp4:2006134149.
DOI: 10.1051/jp4:2006134149
Google Scholar
[9]
Mahesh, V.P., Nair, P.S., Rajan, T.P.D., Pai, B.C., & Hubli, R.C. (2011). Processing of surface-treated boron carbide-reinforced aluminum matrix composites by liquid–metal stir-casting technique. Journal of composite materials, 45(23), 2371-2378. https://doi.org/10.1177/0021998311401086.
DOI: 10.1177/0021998311401086
Google Scholar
[10]
Kalaiselvan, K., Murugan, N., & Parameswaran, S. (2011). Production and characterization of AA6061–B4C stir cast composite. Materials & Design, 32(7), 4004-4009. https://doi.org/10.1016/j.matdes.2011.03.018.
DOI: 10.1016/j.matdes.2011.03.018
Google Scholar
[11]
Hu, Q., Zhao, H., & Li, F. (2016). Effects of manufacturing processes on microstructure and properties of Al/A356–B4C composites. Materials and Manufacturing Processes, 31(10), 1292-1300. https://doi.org/10.1080/10426914.2016.1151049.
DOI: 10.1080/10426914.2016.1151049
Google Scholar
[12]
Raj, R., & Thakur, D. G. (2016). Qualitative and quantitative assessment of microstructure in Al-B4C metal matrix composite processed by modified stir casting technique. Archives of civil and mechanical engineering, 16(4), 949-960. https://doi.org/10.1016/j.acme.2016.07.004.
DOI: 10.1016/j.acme.2016.07.004
Google Scholar
[13]
Raja, T., & Sahu, O. P. (2014). Effects on Microstructure and Hardness of Al-B4C Metal Matrix Composite Fabricated through Powder Metallurgy. Int J Mech Eng, 1, 1.
Google Scholar
[14]
Yigezu, B.S., Mahapatra, M.M., & Jha, P.K. (2013). On modeling the abrasive wear characteristics of in situ Al–12% Si/TiC composites. Materials & Design, 50, 277-284. https://doi.org/10.1016/j.matdes.2013.02.042.
DOI: 10.1016/j.matdes.2013.02.042
Google Scholar
[15]
Ranjith, R., Giridharan, P. K., Devaraj, J., & Bharath, V. (2017). Influence of titanium-coated (B4Cp+ SiCp) particles on sulphide stress corrosion and wear behaviour of AA7050 hybrid composites (for MLG link). Journal of the Australian Ceramic Society, 53(2), 1017-1025. https://doi.org/10.1007/s41779-017-0119-6.
DOI: 10.1007/s41779-017-0119-6
Google Scholar
[16]
Mazahery, A., & Shabani, M. O. (2012). Influence of the hard coated B4C particulates on wear resistance of Al–Cu alloys. Composites Part B: Engineering, 43(3), 1302-1308. https://doi.org/10.1016/j.compositesb.2012.01.011.
DOI: 10.1016/j.compositesb.2012.01.011
Google Scholar
[17]
Sharma, S. C. (2001). The sliding wear behavior of Al6061–garnet particulate composites. Wear, 249(12), 1036-1045. https://doi.org/10.1016/s0043-1648(01)00810-9.
DOI: 10.1016/s0043-1648(01)00810-9
Google Scholar
[18]
Sahin, Y., & Kilicli, V. (2011). Abrasive wear behaviour of SiCp/Al alloy composite in comparison with ausferritic ductile iron. Wear, 271(11-12), 2766-2774. https://doi.org/10.1016/j.wear.2011.05.022.
DOI: 10.1016/j.wear.2011.05.022
Google Scholar
[19]
Rao, R. N., Das, S., Mondal, D. P., & Dixit, G. (2010). Effect of heat treatment on the sliding wear behaviour of aluminium alloy (Al–Zn–Mg) hard particle composite. Tribology international, 43(1-2), 330-339. https://doi.org/10.1016/j.triboint.2009.06.013.
DOI: 10.1016/j.triboint.2009.06.013
Google Scholar
[20]
Pan, Y. M., Fine, M. E., & Cheng, H. S. (1990). Aging effects on the wear behavior of P/M aluminum alloy SiC particle composites. Scripta Metallurgica et Materialia, 24(7), 1341-1345. https://doi.org/10.1016/0956-716x(90)90353-i.
DOI: 10.1016/0956-716x(90)90353-i
Google Scholar
[21]
Bhushan, B. (2000). Frictional heating and contact temperatures. In Modern Tribology Handbook, Two Volume Set (pp.265-302). CRC Press.
DOI: 10.1201/9780849377877-14
Google Scholar
[22]
Feizabadi, A., Doolabi, M. S., Sadrnezhaad, S. K., Zafarani, H. R., Doolabi, D. S., & AsadiZarch, M. (2017). MCDM selection of pulse parameters for best tribological performance of Cr–Al2O3 nano-composite co-deposited from trivalent chromium bath. Journal of Alloys and Compounds, 727, 286-296. https://doi.org/10.1016/j.jallcom.2017.08.098.
DOI: 10.1016/j.jallcom.2017.08.098
Google Scholar
[23]
Singh, T., Patnaik, A., Gangil, B., & Chauhan, R. (2015). Optimization of tribo-performance of brake friction materials: effect of nano filler. Wear, 324, 10-16. https://doi.org/10.1016/j.wear.2014.11.020.
DOI: 10.1016/j.wear.2014.11.020
Google Scholar
[24]
Zadeh, L. A. (1965). Information and control. Fuzzy sets, 8(3), 338-353.
Google Scholar
[25]
Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management science, 17(4), B-141.
Google Scholar
[26]
Kharat, M. G., Kamble, S. J., Raut, R. D., Kamble, S. S., & Dhume, S. M. (2016). Modeling landfill site selection using an integrated fuzzy MCDM approach. Modeling Earth Systems and Environment, 2(2), 53. https://doi.org/10.1007/s40808-016-0106-x.
DOI: 10.1007/s40808-016-0106-x
Google Scholar
[27]
Zhang, Z., Fortin, K., Charette, A., & Chen, X. G. (2011). Effect of titanium on microstructure and fluidity of Al–B4C composites. Journal of materials science, 46(9), 3176-3185. https://doi.org/10.1007/s10853-010-5201-1.
DOI: 10.1007/s10853-010-5201-1
Google Scholar
[28]
Ibrahim, M. F., Ammar, H. R., Samuel, A. M., Soliman, M. S., & Samuel, F. H. (2015). On the impact toughness of Al-15 vol.% B4C metal matrix composites. Composites Part B: Engineering, 79, 83-94.
DOI: 10.1016/j.compositesb.2015.04.018
Google Scholar
[29]
Ibrahim, M. F., Ammar, H. R., Samuel, A. M., Soliman, M. S., & Samuel, F. H. (2013). Metallurgical parameters controlling matrix/B4C particulate interaction in aluminium–boron carbide metal matrix composites. International Journal of Cast Metals Research, 26(6), 364-373. https://doi.org/10.1179/1743133613y.0000000074.
DOI: 10.1179/1743133613y.0000000074
Google Scholar
[30]
Van Broekhoven, E., & De Baets, B. (2006). Fast and accurate center of gravity defuzzification of fuzzy system outputs defined on trapezoidal fuzzy partitions. Fuzzy sets and systems, 157(7), 904-918. https://doi.org/10.1016/j.fss.2005.11.005.
DOI: 10.1016/j.fss.2005.11.005
Google Scholar
[31]
Turskis, Z., Lazauskas, M., & Zavadskas, E. K. (2012). Fuzzy multiple criteria assessment of construction site alternatives for non-hazardous waste incineration plant in Vilnius city, applying ARAS-F and AHP methods. Journal of Environmental Engineering and Landscape Management, 20(2), 110-120. https://doi.org/10.3846/16486897.2011.645827.
DOI: 10.3846/16486897.2011.645827
Google Scholar
[32]
Liao, C. N., Fu, Y. K., & Wu, L. C. (2016). Integrated FAHP, ARAS-F and MSGP methods for green supplier evaluation and selection. Technological and Economic Development of Economy, 22(5), 651-669. https://doi.org/10.3846/20294913.2015.1072750.
DOI: 10.3846/20294913.2015.1072750
Google Scholar
[33]
Nguyen, H. T., Dawal, S. Z. M., Nukman, Y., Aoyama, H., & Case, K. (2015). An integrated approach of fuzzy linguistic preference based AHP and fuzzy COPRAS for machine tool evaluation. PloS one, 10(9), e0133599. https://doi.org/10.1371/journal.pone.0133599.
DOI: 10.1371/journal.pone.0133599
Google Scholar
[34]
Mandal, A., Chakraborty, M., & Murty, B. S. (2007). Effect of TiB2 particles on sliding wear behaviour of Al–4Cu alloy. Wear, 262(1-2), 160-166. https://doi.org/10.1016/j.wear.2006.04.003.
DOI: 10.1016/j.wear.2006.04.003
Google Scholar