Evaluation of Wear Properties of Stir Cast AA7050 -10% B4C Ex Situ Composite through Fuzzy-TOPSIS MCDM Method

Article Preview

Abstract:

The present paper discussed the dry sliding wear and friction behavior of flux assisted stir cast AA7050-10% B4C composite. The K2TiF6 flux improves the wettability of B4C in molten aluminium. The casted composite were heat treated as per T-6 standard. The microstructure studies confirm the uniform distribution of B4C with the layers of Ti compound around it. Both As Casted Composite hereafter called as ACC and Heat Treated Composite hereafter called as HTC under gone dry sliding wear test at room temperature. The experiments were designed using Taguchi L18 mixed design. The responses of the experiment were optimized using fuzzy-TOPSIS MCDM method. From the experimental investigation it was concluded that wear rate of the composite material is a function of normal loads and sliding speed. Moreover, wear rate, coefficient of friction and amount of heat generation for HTC is comparatively less than ACC. This may due to the homogeneous distribution of particles and also formation proper interfacial bond between matrix and reinforcements after heat treatment.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 291)

Pages:

1-12

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Lashgari, H. R., Zangeneh, S., Shahmir, H., Saghafi, M., & Emamy, M. (2010). Heat treatment effect on the microstructure, tensile properties and dry sliding wear behavior of A356–10% B4C cast composites. Materials & Design, 31(9), 4414-4422. https://doi.org/10.1016/j.matdes.2010.04.034.

DOI: 10.1016/j.matdes.2010.04.034

Google Scholar

[2] Kumar, A., & Rai, R. N. (2018, June). Fabrication, Microstructure and Mechanical Properties of Boron Carbide (B4Cp) Reinforced Aluminum Metal Matrix Composite-A Review. In IOP Conference Series: Materials Science and Engineering (Vol. 377, No. 1, p.012092). IOP Publishing. https://doi.org/10.1088/1757-899x/377/1/012092.

DOI: 10.1088/1757-899x/377/1/012092

Google Scholar

[3] Deng, X., & Chawla, N. (2006). Modeling the effect of particle clustering on the mechanical behavior of SiC particle reinforced Al matrix composites. Journal of Materials Science, 41(17), 5731-5734. https://doi.org/10.1007/s10853-006-0100-1.

DOI: 10.1007/s10853-006-0100-1

Google Scholar

[4] Hashim, J., Looney, L., & Hashmi, M. S. J. (2002). Particle distribution in cast metal matrix composites-Part I. Journal of Materials Processing Technology, 123(2), 251-257. https://doi.org/10.1016/s0924-0136(02)00099-7.

DOI: 10.1016/s0924-0136(02)00098-5

Google Scholar

[5] Asthana, R., & Tewari, S. N. (1993). The engulfment of foreign particles by a freezing interface. Journal of materials science, 28(20), 5414-5425. https://doi.org/10.1007/bf00367810.

DOI: 10.1007/bf00367810

Google Scholar

[6] Williams, J. C., & Starke Jr, E. A. (2003). Progress in structural materials for aerospace systems1. Acta Materialia, 51(19), 5775-5799.

DOI: 10.1016/j.actamat.2003.08.023

Google Scholar

[7] Sha, G., & Cerezo, A. (2004). Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050). Acta Materialia, 52(15), 4503-4516. https://doi.org/10.1016/j.actamat.2004.06.025.

DOI: 10.1016/j.actamat.2004.06.025

Google Scholar

[8] Sobolev, V.V., & Usherenko, S.M. (2006). Shock-wave initiation of nuclear transmutation of chemical elements. Journal de Physique IV (Proceedings), 134, 977-982. https://doi.org/10.1051/jp4:2006134149.

DOI: 10.1051/jp4:2006134149

Google Scholar

[9] Mahesh, V.P., Nair, P.S., Rajan, T.P.D., Pai, B.C., & Hubli, R.C. (2011). Processing of surface-treated boron carbide-reinforced aluminum matrix composites by liquid–metal stir-casting technique. Journal of composite materials, 45(23), 2371-2378. https://doi.org/10.1177/0021998311401086.

DOI: 10.1177/0021998311401086

Google Scholar

[10] Kalaiselvan, K., Murugan, N., & Parameswaran, S. (2011). Production and characterization of AA6061–B4C stir cast composite. Materials & Design, 32(7), 4004-4009. https://doi.org/10.1016/j.matdes.2011.03.018.

DOI: 10.1016/j.matdes.2011.03.018

Google Scholar

[11] Hu, Q., Zhao, H., & Li, F. (2016). Effects of manufacturing processes on microstructure and properties of Al/A356–B4C composites. Materials and Manufacturing Processes, 31(10), 1292-1300. https://doi.org/10.1080/10426914.2016.1151049.

DOI: 10.1080/10426914.2016.1151049

Google Scholar

[12] Raj, R., & Thakur, D. G. (2016). Qualitative and quantitative assessment of microstructure in Al-B4C metal matrix composite processed by modified stir casting technique. Archives of civil and mechanical engineering, 16(4), 949-960. https://doi.org/10.1016/j.acme.2016.07.004.

DOI: 10.1016/j.acme.2016.07.004

Google Scholar

[13] Raja, T., & Sahu, O. P. (2014). Effects on Microstructure and Hardness of Al-B4C Metal Matrix Composite Fabricated through Powder Metallurgy. Int J Mech Eng, 1, 1.

Google Scholar

[14] Yigezu, B.S., Mahapatra, M.M., & Jha, P.K. (2013). On modeling the abrasive wear characteristics of in situ Al–12% Si/TiC composites. Materials & Design, 50, 277-284. https://doi.org/10.1016/j.matdes.2013.02.042.

DOI: 10.1016/j.matdes.2013.02.042

Google Scholar

[15] Ranjith, R., Giridharan, P. K., Devaraj, J., & Bharath, V. (2017). Influence of titanium-coated (B4Cp+ SiCp) particles on sulphide stress corrosion and wear behaviour of AA7050 hybrid composites (for MLG link). Journal of the Australian Ceramic Society, 53(2), 1017-1025. https://doi.org/10.1007/s41779-017-0119-6.

DOI: 10.1007/s41779-017-0119-6

Google Scholar

[16] Mazahery, A., & Shabani, M. O. (2012). Influence of the hard coated B4C particulates on wear resistance of Al–Cu alloys. Composites Part B: Engineering, 43(3), 1302-1308. https://doi.org/10.1016/j.compositesb.2012.01.011.

DOI: 10.1016/j.compositesb.2012.01.011

Google Scholar

[17] Sharma, S. C. (2001). The sliding wear behavior of Al6061–garnet particulate composites. Wear, 249(12), 1036-1045. https://doi.org/10.1016/s0043-1648(01)00810-9.

DOI: 10.1016/s0043-1648(01)00810-9

Google Scholar

[18] Sahin, Y., & Kilicli, V. (2011). Abrasive wear behaviour of SiCp/Al alloy composite in comparison with ausferritic ductile iron. Wear, 271(11-12), 2766-2774. https://doi.org/10.1016/j.wear.2011.05.022.

DOI: 10.1016/j.wear.2011.05.022

Google Scholar

[19] Rao, R. N., Das, S., Mondal, D. P., & Dixit, G. (2010). Effect of heat treatment on the sliding wear behaviour of aluminium alloy (Al–Zn–Mg) hard particle composite. Tribology international, 43(1-2), 330-339. https://doi.org/10.1016/j.triboint.2009.06.013.

DOI: 10.1016/j.triboint.2009.06.013

Google Scholar

[20] Pan, Y. M., Fine, M. E., & Cheng, H. S. (1990). Aging effects on the wear behavior of P/M aluminum alloy SiC particle composites. Scripta Metallurgica et Materialia, 24(7), 1341-1345. https://doi.org/10.1016/0956-716x(90)90353-i.

DOI: 10.1016/0956-716x(90)90353-i

Google Scholar

[21] Bhushan, B. (2000). Frictional heating and contact temperatures. In Modern Tribology Handbook, Two Volume Set (pp.265-302). CRC Press.

DOI: 10.1201/9780849377877-14

Google Scholar

[22] Feizabadi, A., Doolabi, M. S., Sadrnezhaad, S. K., Zafarani, H. R., Doolabi, D. S., & AsadiZarch, M. (2017). MCDM selection of pulse parameters for best tribological performance of Cr–Al2O3 nano-composite co-deposited from trivalent chromium bath. Journal of Alloys and Compounds, 727, 286-296. https://doi.org/10.1016/j.jallcom.2017.08.098.

DOI: 10.1016/j.jallcom.2017.08.098

Google Scholar

[23] Singh, T., Patnaik, A., Gangil, B., & Chauhan, R. (2015). Optimization of tribo-performance of brake friction materials: effect of nano filler. Wear, 324, 10-16. https://doi.org/10.1016/j.wear.2014.11.020.

DOI: 10.1016/j.wear.2014.11.020

Google Scholar

[24] Zadeh, L. A. (1965). Information and control. Fuzzy sets, 8(3), 338-353.

Google Scholar

[25] Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management science, 17(4), B-141.

Google Scholar

[26] Kharat, M. G., Kamble, S. J., Raut, R. D., Kamble, S. S., & Dhume, S. M. (2016). Modeling landfill site selection using an integrated fuzzy MCDM approach. Modeling Earth Systems and Environment, 2(2), 53. https://doi.org/10.1007/s40808-016-0106-x.

DOI: 10.1007/s40808-016-0106-x

Google Scholar

[27] Zhang, Z., Fortin, K., Charette, A., & Chen, X. G. (2011). Effect of titanium on microstructure and fluidity of Al–B4C composites. Journal of materials science, 46(9), 3176-3185. https://doi.org/10.1007/s10853-010-5201-1.

DOI: 10.1007/s10853-010-5201-1

Google Scholar

[28] Ibrahim, M. F., Ammar, H. R., Samuel, A. M., Soliman, M. S., & Samuel, F. H. (2015). On the impact toughness of Al-15 vol.% B4C metal matrix composites. Composites Part B: Engineering, 79, 83-94.

DOI: 10.1016/j.compositesb.2015.04.018

Google Scholar

[29] Ibrahim, M. F., Ammar, H. R., Samuel, A. M., Soliman, M. S., & Samuel, F. H. (2013). Metallurgical parameters controlling matrix/B4C particulate interaction in aluminium–boron carbide metal matrix composites. International Journal of Cast Metals Research, 26(6), 364-373. https://doi.org/10.1179/1743133613y.0000000074.

DOI: 10.1179/1743133613y.0000000074

Google Scholar

[30] Van Broekhoven, E., & De Baets, B. (2006). Fast and accurate center of gravity defuzzification of fuzzy system outputs defined on trapezoidal fuzzy partitions. Fuzzy sets and systems, 157(7), 904-918. https://doi.org/10.1016/j.fss.2005.11.005.

DOI: 10.1016/j.fss.2005.11.005

Google Scholar

[31] Turskis, Z., Lazauskas, M., & Zavadskas, E. K. (2012). Fuzzy multiple criteria assessment of construction site alternatives for non-hazardous waste incineration plant in Vilnius city, applying ARAS-F and AHP methods. Journal of Environmental Engineering and Landscape Management, 20(2), 110-120. https://doi.org/10.3846/16486897.2011.645827.

DOI: 10.3846/16486897.2011.645827

Google Scholar

[32] Liao, C. N., Fu, Y. K., & Wu, L. C. (2016). Integrated FAHP, ARAS-F and MSGP methods for green supplier evaluation and selection. Technological and Economic Development of Economy, 22(5), 651-669. https://doi.org/10.3846/20294913.2015.1072750.

DOI: 10.3846/20294913.2015.1072750

Google Scholar

[33] Nguyen, H. T., Dawal, S. Z. M., Nukman, Y., Aoyama, H., & Case, K. (2015). An integrated approach of fuzzy linguistic preference based AHP and fuzzy COPRAS for machine tool evaluation. PloS one, 10(9), e0133599. https://doi.org/10.1371/journal.pone.0133599.

DOI: 10.1371/journal.pone.0133599

Google Scholar

[34] Mandal, A., Chakraborty, M., & Murty, B. S. (2007). Effect of TiB2 particles on sliding wear behaviour of Al–4Cu alloy. Wear, 262(1-2), 160-166. https://doi.org/10.1016/j.wear.2006.04.003.

DOI: 10.1016/j.wear.2006.04.003

Google Scholar