Influence of Overheating and Cooling Rate on the Structure and Physicochemical Properties of Al-Cu Alloys

Article Preview

Abstract:

The effect of overheating of the melt and cooling rate of alloys of the Al-Cu system with a copper content of 25.0 – 36.0% ( mass.), the rest of the aluminum is investigated. It is shown that an overheating of the liquid at 50 – 100 K above the liquid-liquid line leads to the formation of a fine-dispersed eutectic structure and the inhibition of the formation of primary aluminum crystals in the pre-evacuation of alloys and the Al2Cu phase in hypereuvtectic alloys, in accordance. An increase in the melt overheating temperature by 150 K above the liquid-liquid line and the subsequent cooling at 103 – 104 K/s leads to the complete inhibition of the formation of primary crystals. An overheating of the melt on 100 – 150 K alloys above the liquid line and subsequent cooling with a velocity of 103 – 104 K /s reduces the rate of corrosion by 30 – 45% and increases the numerical value in 1.3 – 1.45 times the relative wear resistance, and the brittleness of alloys decreases in 1.2 – 1.35 times in comparison with the samples after casting.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 291)

Pages:

42-51

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Arzamasceva, B.N., & Muhina, G.G. (2002). Materialovedenie. M.: Izd-vo MGU im. N.E. Bau-mana.

Google Scholar

[2] Solomaho, V.L., Tomilin, R.I., Citovich, B.V., Yudovin, L.G. (1990). Spravochnik konstruktora-priborostroitelya. Detali i mehanizmy priborov. Minsk.: Vysheysh. shk.

Google Scholar

[3] Murray, J.L. (1985). The aluminium-copper system. Meta. International ls Reviews, (30), 211-235.

Google Scholar

[4] Wolverton, C. (2001). Entropically Favored Ordering: The Metallurgy of Al2Cu Revisited, Physical review letters, 86(11), 5518-5521.

Google Scholar

[5] Aaronson, H.I., & Laird, C. (1968). Structure and Migration Kinetics of Alpha: Theta Prime Boundaries in Al-4 Pct Cu: Part II-Kinetics of Growth. Trans. Metall. Soc. AIME, (242), 1437-1448.

Google Scholar

[6] Plevachuk, Y., Sklyarchuk, V., Yakymovych, A, Eckert, S., Willers, B., Eigenfeld Density, Viscosity (2008). Electrical Conductivity of Hypoeutectic Al-Cu Liquid Alloys. Metallurgical and Material stransactions, (39), 3040-3045.

DOI: 10.1007/s11661-008-9659-2

Google Scholar

[7] Konstantinova, N.Yu., Popel, P.S., & Yagodin, D.A. (2009). Kinematicheskaya vyazkost zhyidkih splavov med-alyuminiy. ТВТ, 47(3), 354- 359.

Google Scholar

[8] Friedrichs, H.A., Ronkow, L.W., & Zhou, Y. (1977). Measurement of viscosity, density and surface tension of metal melts. Process metallurgy steel research, 68(5), 209-214.

DOI: 10.1002/srin.199701780

Google Scholar

[9] Konstantinova, N.Y., & Popel, P.S. (2008). Kinematic viscosity of liquid Al-Cu alloys. 13th International Conference on Liquidand Amorphous Metals, Journal of Physics: Conference Series, 4.

DOI: 10.1088/1742-6596/98/6/062022

Google Scholar

[10] Brillo, J., Bytchkov, A., & Egry, I., Hennet, L., Mathiak, I., Pozdnyakova, G., Pricec, D. L., Thiaudiered, D., & Zanghi, D. (2006). Local structure in liquid binary Al–Cu and Al–Ni alloys. Journalof Non-Crystalline Solids, (352), 4008-4012.

DOI: 10.1016/j.jnoncrysol.2006.08.011

Google Scholar

[11] Mudrya, S., Shtablavyi, I., Shcherba, I. (2008). Liquid eutectic alloys as a cluster solutions. Archives of Materials Science and Engineering, 34(1), 14-18.

Google Scholar

[12] Zamyatin, V.M., Nasyirov, Ya.A., Klassen, N.I. (1986). Anomalii na politermakh vyazkosti zhidkikh splavov sistemy alyuminii-med. Zhurnal fizicheskoi khimii, 60(1), 243-248.

Google Scholar

[13] Bazin, Yu.A., Zamyatin, V.M., Nasyirov, Ya.A., & Emel'yanov, A.V. (1985). O strukturnykh prevrascheniyakh v zhidkom alyuminii Izv. Vyssh. Uchebn. Zaved., Chern. Met., (5), 28-32.

Google Scholar

[14] Oliver, W.C., & Prahn, G.M. (2008). Animproved technique for determin in gelasticmodulus and conten timpurity in the metals. J. Materials. Res., 12(6), 564-583.

Google Scholar

[15] Azhazha, V.M., Azarenkov, N.A., Semenenko, V.E., & Kuz'min, A.V. (2008). Osobennosti polucheniya i svoystva estestvennykh kompozitsionnykh materialov na osnove tugoplavkikh metallov. MFNT, 30(12), 277-288.

Google Scholar

[16] Kalashnikov, E.V. (1977). Termodinamicheski neustoychivyie sostoyaniya v evtekticheskih sistemah. Journal of Technical Physics, 67(4), 7-12.

Google Scholar

[17] Tverdokhlebova, S.V. (2007). Spectrometry of the boron-containing alloys, Vіsnik Dnіpropetrovskogo nacіonalnogo unіversitetu Serіja. fіzika. Radіoelektronіka, 14(12/1), 100-104.

Google Scholar

[18] Liyakishev, N.P. (1966). Diagrammy sostoyaniya dvoynyh metallicheskih sistem. M.: Mashinostroenie, (1).

Google Scholar

[19] Juk, N.P. (1991). Kurs teoriyi korroziyi i zaschiti metallov. М.: Metallurgiya, (1, 2).

Google Scholar

[20] Klinov, I.Ya. (1967). Korroziya chimicheskoy apparaturi i korrozionnostoykiye materiali. М.: Mashinostroenie.

Google Scholar

[21] Rozenfeld, I.L. (1970). Korroziya i zachita metallov. М.: Metallurgiya.

Google Scholar

[22] Semenova, I.V., Florianovich, G.M., Horoshilov, А.V. (2006). Korroziya i zachita ot korrozii. М.: Fizmatlit.

Google Scholar

[23] Todt, F. (1966). Korroziya i zachita ot korrozii. Korroziya metallov i splavov. Per. s nem., Chimiya.

Google Scholar