Mechanochemical Activation of Materials to Produce Conductive and Superconductive Substances for Batteries

Article Preview

Abstract:

It has been demonstrated that vibratory impact mineral loading results in the formation of solid solutions. A technique to determine concentration dependence of inversion degree of solid binary solutions according to the known values of their components activity has been proposed. Values of thermodynamic functions of the solutions mixing in terms of statistic formulas as well as by means of immediate processing of the experiment have been determined.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 291)

Pages:

121-130

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bogatyreva, E.V. (2014). Estimation of efficiency of preliminary mechanical activation of low-grade tungstenite concentrate by Х-ray diffraction analysis. Tsvetnye Metally, 2(7),58-61.

Google Scholar

[2] Avakumova E.G. (2009). Fundamentalnyie osnovyi mehanicheskoy aktivatsii, mehanosinteza i mehanohimicheskih tehnologiy. Novosibirsk: Izd-vo SO RAN.

Google Scholar

[3] Hachaturyan A.G. (1974). Teoriya fazovyih prevrascheniy i struktura tverdyih rastvorov, M.: Nauka.

Google Scholar

[4] Grischishina, L.N. (2007). K probleme modelirovaniya tochechnyih defektov kak mest zarozhdeniya struktur srastaniya v tverdyih rastvorah, legirovannyih kremniem, Matematicheskie modeli i vyichislitelnyiy eksperiment v materialovedenii, (9), 65-70.

Google Scholar

[5] Tatarchuk, T., & Yanishevs`ka, O. (2003). Kvazistrukturny`j mexanizm ta pry`roda defektiv pry` utvorenni cy`nkovogo fery`tu. Py`tannya ximiyi ta ximichnoyi texnologiyi, (4), 41-46.

Google Scholar

[6] Debata, M.A. (2004). Upadhyaya. Effect of boron addition on sintering of tungsten based alloys. J. Mater. Sci. (39), 2539-2541.

DOI: 10.1023/b:jmsc.0000020023.21159.e5

Google Scholar

[7] Rittel, D., & Weisbrod, G. (2001). Dynamic fracture of tungsten base heavy alloys. International Journal of fracture, (212), 87-98.

Google Scholar

[8] Kachenyuk, M.N., & Smetkin, A.A. (2014). Evolyutsiya strukturyi kompozitsionnyih chastits pri mehanoaktivatsii poroshkovyih smesey na osnove titana, karbida kremniya i ugleroda, Sovremennyie problemyi nauki i obrazovaniya, (6), 69-71.

Google Scholar

[9] Bose, A., Kapoor, D., Magness, L.S., & Dowding, R.J. (1977). Processing strategy for tungsten heavy alloys. Proc. of the Fourth Intern. Conf. on Tungsten; Refractory Metals and Alloys: Processing, Properties and Applications,. 321-347.

Google Scholar

[10] Franchuk, V. P. (2010). Vibratsionnaya tekhnika v malykh proizvodstvakh. Heotekhnіchna mekhanіka, (85), 290-296.

Google Scholar

[11] Sohor, M.I., & Sofronov, G.V. (1969). Metodika kolichestvennogo rentgenovskogo analiza soderzhaniya svobodnogo ugleroda v karbide bora. Himicheskie svoystva i metodyi analiza tugoplavkih soedineniy, 9-18.

Google Scholar

[12] Boldyirev, V.V. (2006). Mehanohimiya i mehanicheskaya aktivatsiya tverdyih veschestv. Uspehi himii, 75(3), 203-216.

Google Scholar

[13] Savitskiy E.M. (1976). Sverhprovodyaschie soedineniya perehodnyih metallov. M.: Nauka.

Google Scholar

[14] Mattheiss, L.F. (1972). Super conductive materials and some of their properties, Phys. Rev., B5(2), 290-295.

Google Scholar

[15] Savitskiy, E.M. (1974). Vliyanie temperaturyi na mehanicheskie svoystva metallov i splavov. M.: Iz-vo AN SSSR.

Google Scholar

[16] Svetkina, O. (2012). Monitoring of quality of mineral by method of conductivity. School of Underground Mining, 141-147.  http://dx.doi.org/10.1201/b13157-35.

Google Scholar

[17] Svetkina, O., Tarasova, H., & Netiaga, O. (2016). Multi-purpose sorbent production by coal ash recycling. Mining of Mineral Deposits, 10(1), 77-82.

DOI: 10.15407/mining10.01.077

Google Scholar