[1]
Bogatyreva, E.V. (2014). Estimation of efficiency of preliminary mechanical activation of low-grade tungstenite concentrate by Х-ray diffraction analysis. Tsvetnye Metally, 2(7),58-61.
Google Scholar
[2]
Avakumova E.G. (2009). Fundamentalnyie osnovyi mehanicheskoy aktivatsii, mehanosinteza i mehanohimicheskih tehnologiy. Novosibirsk: Izd-vo SO RAN.
Google Scholar
[3]
Hachaturyan A.G. (1974). Teoriya fazovyih prevrascheniy i struktura tverdyih rastvorov, M.: Nauka.
Google Scholar
[4]
Grischishina, L.N. (2007). K probleme modelirovaniya tochechnyih defektov kak mest zarozhdeniya struktur srastaniya v tverdyih rastvorah, legirovannyih kremniem, Matematicheskie modeli i vyichislitelnyiy eksperiment v materialovedenii, (9), 65-70.
Google Scholar
[5]
Tatarchuk, T., & Yanishevs`ka, O. (2003). Kvazistrukturny`j mexanizm ta pry`roda defektiv pry` utvorenni cy`nkovogo fery`tu. Py`tannya ximiyi ta ximichnoyi texnologiyi, (4), 41-46.
Google Scholar
[6]
Debata, M.A. (2004). Upadhyaya. Effect of boron addition on sintering of tungsten based alloys. J. Mater. Sci. (39), 2539-2541.
DOI: 10.1023/b:jmsc.0000020023.21159.e5
Google Scholar
[7]
Rittel, D., & Weisbrod, G. (2001). Dynamic fracture of tungsten base heavy alloys. International Journal of fracture, (212), 87-98.
Google Scholar
[8]
Kachenyuk, M.N., & Smetkin, A.A. (2014). Evolyutsiya strukturyi kompozitsionnyih chastits pri mehanoaktivatsii poroshkovyih smesey na osnove titana, karbida kremniya i ugleroda, Sovremennyie problemyi nauki i obrazovaniya, (6), 69-71.
Google Scholar
[9]
Bose, A., Kapoor, D., Magness, L.S., & Dowding, R.J. (1977). Processing strategy for tungsten heavy alloys. Proc. of the Fourth Intern. Conf. on Tungsten; Refractory Metals and Alloys: Processing, Properties and Applications,. 321-347.
Google Scholar
[10]
Franchuk, V. P. (2010). Vibratsionnaya tekhnika v malykh proizvodstvakh. Heotekhnіchna mekhanіka, (85), 290-296.
Google Scholar
[11]
Sohor, M.I., & Sofronov, G.V. (1969). Metodika kolichestvennogo rentgenovskogo analiza soderzhaniya svobodnogo ugleroda v karbide bora. Himicheskie svoystva i metodyi analiza tugoplavkih soedineniy, 9-18.
Google Scholar
[12]
Boldyirev, V.V. (2006). Mehanohimiya i mehanicheskaya aktivatsiya tverdyih veschestv. Uspehi himii, 75(3), 203-216.
Google Scholar
[13]
Savitskiy E.M. (1976). Sverhprovodyaschie soedineniya perehodnyih metallov. M.: Nauka.
Google Scholar
[14]
Mattheiss, L.F. (1972). Super conductive materials and some of their properties, Phys. Rev., B5(2), 290-295.
Google Scholar
[15]
Savitskiy, E.M. (1974). Vliyanie temperaturyi na mehanicheskie svoystva metallov i splavov. M.: Iz-vo AN SSSR.
Google Scholar
[16]
Svetkina, O. (2012). Monitoring of quality of mineral by method of conductivity. School of Underground Mining, 141-147. http://dx.doi.org/10.1201/b13157-35.
Google Scholar
[17]
Svetkina, O., Tarasova, H., & Netiaga, O. (2016). Multi-purpose sorbent production by coal ash recycling. Mining of Mineral Deposits, 10(1), 77-82.
DOI: 10.15407/mining10.01.077
Google Scholar