[1]
Makogon Yu.F. (1997). Hydrates of Hydrocarbons. Tulsa.: Penn Well Books.
Google Scholar
[2]
Eslamimanesh, A., Mohammadi, A.H., Richon, D., Naidoo, P., & Ramjugernath, D. (2012). Application of gas hydrate formation in separation processes: A review of experimental studies. J. Chem. Thermodyn, (46), 62-71.
DOI: 10.1016/j.jct.2011.10.006
Google Scholar
[3]
Babu, P., Linga, P., Kumar, R., & Englezos, P. (2015). A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy, (85), 261-279.
DOI: 10.1016/j.energy.2015.03.103
Google Scholar
[4]
Onyshchenko, V.O., & Klymenko, V.V. (2011). Zastosuvannya hazohidratnykh tekhnolohiy v naftohazoviy promyslovosti. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 4(41), 5-8.
Google Scholar
[5]
Gudmundsson, J.S., & Børrehaug, A. (1996). Frozen Hydrate for Transport of Natural Gas. In Proc. of the 2nd International Conference on Natural Gas Hydrate. 415-422.
Google Scholar
[6]
Hao, W., Wang, J., Fan, S., & Hao, W. (2008). Evaluation and analysis method for natural gas hydrate storage and transportation processes. Energy Convers. Manag., (49), 2546-2553.
DOI: 10.1016/j.enconman.2008.05.016
Google Scholar
[7]
Veluswamy, H.P., Kumar, R., & Linga, P. (2014). Hydrogen storage in clathrate hydrates: current state of the art and future directions. Appl. Energy, (122), 112-132.
DOI: 10.1016/j.apenergy.2014.01.063
Google Scholar
[8]
Bondarenko, V., Svietkina, O., & Sai, K. (2017). Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies, 5(6(89)), 48-55.
DOI: 10.15587/1729-4061.2017.112313
Google Scholar
[9]
Bondarenko, V., Tabachenko, M., & Wachowicz, J. (2010). Possibility of production complex of sufficient gasses in Ukraine. New Techniques and Technologies in Mining, 113-119.
DOI: 10.1201/b11329-19
Google Scholar
[10]
Bоndarеnkо, V., Kоvalеvska, І., Astafіеv, D., & Malоva, О. (2018). Еxamіnatіоn оf Phasе Transіtіоn оf Mіnе Mеthanе tо Gas Hydratеs and thеіr Suddеn Faіlurе – Pеrcy Brіdgman's Еffеct. Sоlіd Statе Phеnоmеna, 277, 137-146.
Google Scholar
[11]
Park, K.N., Hong, S.Y., Lee, J.W., Kang, K.C., Lee, Y.C., Ha, M.G., & Lee, J.D. (2011). A new apparatus for seawater desalination by gas hydrate process and removal characteristics ofdissolved minerals (Na+, Mg2+, Ca2+, K+, B3+). Desalination, (274), 91-96.
DOI: 10.1016/j.desal.2011.01.084
Google Scholar
[12]
Cha, J.H., &Seol, Y. (2013). Increasing gas hydrate formation temperature for desalination of high salinity produced water with secondary guests. ACS Sustain. Chem. Eng., 1(10), 1218-1224.
DOI: 10.1021/sc400160u
Google Scholar
[13]
Shifeng, Li, Yanming Shen et al. (2015). Experimental study of concentration of tomato juice by CO2 hydrate formation. Chem. Ind. Chem. Eng. Q., 21(3), 441-446.
DOI: 10.2298/ciceq140730046l
Google Scholar
[14]
Purwanto, Y.A., Oshita, S., Seo, Y. & Kawagoe. Y. (2014). Separation Process of Nonpolar Gas Hydrate in Food Solution under High Pressure Apparatus. International Journal of Chemical Engineering, ID 262968.
DOI: 10.1155/2014/262968
Google Scholar
[15]
Fournaison, L., Delahaye, A., Chatti, I., & Petitet, J.P. (2004). CO2 hydrates in refrigeration processes. Ind. Eng. Chem. Res., (43), 6521-6526.
DOI: 10.1021/ie030861r
Google Scholar
[16]
Mori, T., & Mori, Y.H. (1989). Characterization of gas hydrate formation in direct-contact cool storage process. Int. J. Refrig., (12), 259-265.
DOI: 10.1016/0140-7007(89)90091-1
Google Scholar
[17]
Xiaolin, Wang, Mike, Dennis, & Liangzhuo, Hou (2014). Clathrate hydrate technology for cold storage in air conditioning systems. Renewable and Sustainable Energy Reviews, (36), 34-51.
DOI: 10.1016/j.rser.2014.04.032
Google Scholar
[18]
Melnikоv, V., & Gennadinik, V. (2018). Cryоdiversity: the Wоrld оf Cоld оn the Earth and in the Sоlar System. Philоsоphy and Cоsmоlоgy, (20), 43-54.
Google Scholar
[19]
Denisov, Y.P., & Klymenko, V.V. (2017). Ecxtraction of Thermal Energy from the Ocean Using Gas Hydrates. Environmentally Sustainable Design, (1), 1-11.
Google Scholar
[20]
Denysov, Yu.P., Klymenko, V.V., Martynenko, V.V., & Rybicki, S. (2017). Technology for development of methane-hydrate deposits jointly with receiving fresh water. AGH DRILLING, OIL, GAS, 34(2), 531-542.
DOI: 10.7494/drill.2017.34.2.531
Google Scholar
[21]
Bondarenko, V., Lozynskyi, V., Sai, K., & Anikushyna, K. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 27-32. https://doi.org/10.1201/b19901-6.
DOI: 10.1201/b19901-6
Google Scholar
[22]
Makogon Y.F., Holditch S.A., & Makogon T.Y. (2007). Natural gas-hydrates – a potential energy source for the 21st century. J Petrol Sci Eng., (56), 14-31.
DOI: 10.1016/j.petrol.2005.10.009
Google Scholar
[23]
Duc N.G., Chauvy F., & Herri J.-M. (2007). CO2 Capture by Hydrate crystallization – A potential Solution for Gas emission of Steelmaking Industry. Energy Conversion and Management (48), 1313-1322.
DOI: 10.1016/j.enconman.2006.09.024
Google Scholar
[24]
Torré, J.P., Dicharry, C, Ricaurte, M, Daniel-David, D., & Broseta D. (2011). CO2 capture by hydrate formation in quiescent conditions: in search of efficient kinetic additives. Energy Procedia, (4).621-628.
DOI: 10.1016/j.egypro.2011.01.097
Google Scholar
[25]
Gaurina-Međimurec, N., Novak-Mavar, K., & Majić, M. (2018). CCS technology: overview of projects, technology and monitoring. Rudarsko Geolosko Naftni Zbornik, 33(2), 1-14. https://doi.org/10.17794/rgn.2018.2.1.
DOI: 10.17794/rgn.2018.2.1
Google Scholar
[26]
Goel, N. (2006). In situ methane hydrate dissociation with carbon dioxide sequestration: Current knowledge and issues. J. Petrol. Sci.Eng., (51), 169-184.
DOI: 10.1016/j.petrol.2006.01.005
Google Scholar
[27]
Qing, Yuan, Chang, Yu Sun, & Bei Liu (2013). Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2. Energy Conversion and Management, 3(67), 257-264.
DOI: 10.1016/j.enconman.2012.11.018
Google Scholar
[28]
Gaurina-Međimurec, N., & Novak Mavar, K. (2017). Depleted hydrocarbon reservoirs and CO2 injection wells – CO2 leakage assessment. Rudarsko Geolosko Naftni Zbornik, 32(2), 15-26. https://doi.org/10.17794/rgn.2017.2.3.
DOI: 10.17794/rgn.2017.2.3
Google Scholar
[29]
Vulin, D., Gaćina, M., & Biličić, V. (2018). Slim-tube simulation model for CO2 injection eor. Rudarsko Geolosko Naftni Zbornik, 33(2), 37-48. https://doi.org/10.17794/rgn.2018.2.4.
DOI: 10.17794/rgn.2018.2.4
Google Scholar
[30]
Bondarenko, V., Maksymova, E., & Koval, O. (2013). Genetic classification of gas hydrates deposits types by geologic-structural criteria. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 115-119.
DOI: 10.1201/b16354-20
Google Scholar
[31]
Koltun, P., & Klymenko, V. (2016). Methane hydrates – Australian perspective. Mining of Mineral Deposits, 10(4), 11-18. https://doi.org/10.15407/mining10.04.011.
DOI: 10.15407/mining10.04.011
Google Scholar
[32]
Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hydrates formation from gaseous mixtures of various compositions. Annual Scientific-Technical Colletion - Mining of Mineral DepositsMining of Mineral Deposits, 203-205.
DOI: 10.1201/b16354-36
Google Scholar
[33]
Bondarenko, V., Sai, K., Ganushevych, K., & Ovchynnikov, M. (2015). The results of gas hydrates process research in porous media. New Developments in Mining Engineering 2015, 123-127.
DOI: 10.1201/b19901-23
Google Scholar
[34]
Roux, G.M. (1968). The rate of formation of CH2ClF (F-31) hydrate in a continious stirred reactor. Revers osmosis membrane research, (369), 24.
Google Scholar
[35]
Pangborn, J.B., & Barduhn, J. (1976). The Kinetics of Methyl Bromide Hydrate Formation. Desalination, (8), 564-573.
DOI: 10.1016/s0011-9164(00)82013-5
Google Scholar
[36]
Gaillard, C., Monfort, J.P., & Peytavy, J. (1996). Formation and growth kinetics of natural gas hydrate. International conference on natural gas hydrates №2, Toulouse, FRANCE, 183-190.
Google Scholar
[37]
Gaillard, C., Monfort, J.-P., & Peytavy, J.-L. (2016). Investigation of Methane Hydrate Formation in a Recirculating Flow Loop: Modeling of the Kinetics and Tests of Efficiency of Chemical Additives on Hydrate Inhibition. Oil & Gas Science and Technology Ð Rev. IFP, 54(3), 365-374.
DOI: 10.2516/ogst:1999033
Google Scholar
[38]
Klymenko, V.V. (2012) Naukovo-tekhnichni osnovy hazohidratnoyi tekhnolohiyi (termodynamika ta kinetyka protsesiv, skhemni rishennya): avtoref. dys. dokt. tekhn. nauk: 05.14.06.
Google Scholar
[39]
Zare Nezhad, B., &Varaminian, F. (2012). A generalized macroscopic kinetic model for description of gas hydrate formation processes in isothermal-isochoric systems. Energy Convers Manage, (57), 125-130.
DOI: 10.1016/j.enconman.2011.12.015
Google Scholar
[40]
Meindinyo, R.-E., & Svartaas, T. (2016). Gas Hydrate Growth Kinetics: A Parametric Study. Energies, 9(12), 1021.
DOI: 10.3390/en9121021
Google Scholar
[41]
Cherskij, H.B. & Mihajlov, H.E. (1990). Razmer ravnovesnyh kriticheskih zarodyshej gazovyh gidratov. DAN SSSR, 312(4), 968-971.
Google Scholar
[42]
Kashchiev, D., & Firoozabadi, A. (2002). Nucleation of gas hydrates. J. Crystal Growth., (243), 476-489.
DOI: 10.1016/s0022-0248(02)01576-2
Google Scholar
[43]
Verigin, A.N., Shhupljak, I.A., & Mihalev, M.F. (1986). Kristallizacija v dispersnyh sistemah: Inzhenernye metody rascheta, L.: Himija.
Google Scholar
[44]
Vadzinskij, R.N. (2001). Spravochnik po verojatnostnym raspredelenijam. SPb.: Nauka.
Google Scholar
[45]
Buhina, M.F. (1973). Kristalizacija kauchukov i rezin. M.: Himija.
Google Scholar
[46]
Illner, R. (2007). Modeling with dynamical systems and kinetic equations. Riv. Mat. Univ. Parma 6(7), 199-243.
Google Scholar