Modeling of the Kinetics of the Gas Hydrates Formation on the Basis of a Stochastic Approach

Article Preview

Abstract:

Recently, more attention has been paid to the development of gas hydrate deposits, the use of gas-hydrated technologies, suitable for energy-efficient transportation of natural gas, the separation of gas mixtures, production and storage of cold, desalinating of seawater, etc. Hydrate formation is one of the main processes of gas-hydrate technological installations. In the article a model is proposed that describes the kinetics of the formation of hydrate in disperse systems, which are characteristic for real conditions of operation of gas-hydrate installations, on the basis of a stochastic approach using Markov chains. An example of numerical calculations is presented on the basis of the proposed model of the dynamics of the total mass of gas hydrates, and changes in the velocity of their formation and size distribution at different values of the nucleation constants and growth rate of the gas hydrates, and results of these calculations are analyzed. It is shown that the rate of formation of hydrate has a maximum value in half the time period of the whole process. The obtained results of the calculations of the dynamics the total mass of gas hydrates are in good agreement with the results of calculations by the equation of kinetics Kolmogorov-Avrami. The proposed model can be applied to the inverse problem: the determination of the nucleation constants and the rate of growth of gas hydrates by the results of the dynamics of the formation of hydrate and the changes in the fractional composition of the generated gas hydrates.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 291)

Pages:

98-109

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Makogon Yu.F. (1997). Hydrates of Hydrocarbons. Tulsa.: Penn Well Books.

Google Scholar

[2] Eslamimanesh, A., Mohammadi, A.H., Richon, D., Naidoo, P., & Ramjugernath, D. (2012). Application of gas hydrate formation in separation processes: A review of experimental studies. J. Chem. Thermodyn, (46), 62-71.

DOI: 10.1016/j.jct.2011.10.006

Google Scholar

[3] Babu, P., Linga, P., Kumar, R., & Englezos, P. (2015). A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy, (85), 261-279.

DOI: 10.1016/j.energy.2015.03.103

Google Scholar

[4] Onyshchenko, V.O., & Klymenko, V.V. (2011). Zastosuvannya hazohidratnykh tekhnolohiy v naftohazoviy promyslovosti. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 4(41), 5-8.

Google Scholar

[5] Gudmundsson, J.S., & Børrehaug, A. (1996). Frozen Hydrate for Transport of Natural Gas. In Proc. of the 2nd International Conference on Natural Gas Hydrate. 415-422.

Google Scholar

[6] Hao, W., Wang, J., Fan, S., & Hao, W. (2008). Evaluation and analysis method for natural gas hydrate storage and transportation processes. Energy Convers. Manag., (49), 2546-2553.

DOI: 10.1016/j.enconman.2008.05.016

Google Scholar

[7] Veluswamy, H.P., Kumar, R., & Linga, P. (2014). Hydrogen storage in clathrate hydrates: current state of the art and future directions. Appl. Energy, (122), 112-132.

DOI: 10.1016/j.apenergy.2014.01.063

Google Scholar

[8] Bondarenko, V., Svietkina, O., & Sai, K. (2017). Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies, 5(6(89)), 48-55.

DOI: 10.15587/1729-4061.2017.112313

Google Scholar

[9] Bondarenko, V., Tabachenko, M., & Wachowicz, J. (2010). Possibility of production complex of sufficient gasses in Ukraine. New Techniques and Technologies in Mining, 113-119.

DOI: 10.1201/b11329-19

Google Scholar

[10] Bоndarеnkо, V., Kоvalеvska, І., Astafіеv, D., & Malоva, О. (2018). Еxamіnatіоn оf Phasе Transіtіоn оf Mіnе Mеthanе tо Gas Hydratеs and thеіr Suddеn Faіlurе – Pеrcy Brіdgman's Еffеct. Sоlіd Statе Phеnоmеna, 277, 137-146.

Google Scholar

[11] Park, K.N., Hong, S.Y., Lee, J.W., Kang, K.C., Lee, Y.C., Ha, M.G., & Lee, J.D. (2011). A new apparatus for seawater desalination by gas hydrate process and removal characteristics ofdissolved minerals (Na+, Mg2+, Ca2+, K+, B3+). Desalination, (274), 91-96.

DOI: 10.1016/j.desal.2011.01.084

Google Scholar

[12] Cha, J.H., &Seol, Y. (2013). Increasing gas hydrate formation temperature for desalination of high salinity produced water with secondary guests. ACS Sustain. Chem. Eng., 1(10), 1218-1224.

DOI: 10.1021/sc400160u

Google Scholar

[13] Shifeng, Li, Yanming Shen et al. (2015). Experimental study of concentration of tomato juice by CO2 hydrate formation. Chem. Ind. Chem. Eng. Q., 21(3), 441-446.

DOI: 10.2298/ciceq140730046l

Google Scholar

[14] Purwanto, Y.A., Oshita, S., Seo, Y. & Kawagoe. Y. (2014). Separation Process of Nonpolar Gas Hydrate in Food Solution under High Pressure Apparatus. International Journal of Chemical Engineering, ID 262968.

DOI: 10.1155/2014/262968

Google Scholar

[15] Fournaison, L., Delahaye, A., Chatti, I., & Petitet, J.P. (2004). CO2 hydrates in refrigeration processes. Ind. Eng. Chem. Res., (43), 6521-6526.

DOI: 10.1021/ie030861r

Google Scholar

[16] Mori, T., & Mori, Y.H. (1989). Characterization of gas hydrate formation in direct-contact cool storage process. Int. J. Refrig., (12), 259-265.

DOI: 10.1016/0140-7007(89)90091-1

Google Scholar

[17] Xiaolin, Wang, Mike, Dennis, & Liangzhuo, Hou (2014). Clathrate hydrate technology for cold storage in air conditioning systems. Renewable and Sustainable Energy Reviews, (36), 34-51.

DOI: 10.1016/j.rser.2014.04.032

Google Scholar

[18] Melnikоv, V., & Gennadinik, V. (2018). Cryоdiversity: the Wоrld оf Cоld оn the Earth and in the Sоlar System. Philоsоphy and Cоsmоlоgy, (20), 43-54.

Google Scholar

[19] Denisov, Y.P., & Klymenko, V.V. (2017). Ecxtraction of Thermal Energy from the Ocean Using Gas Hydrates. Environmentally Sustainable Design, (1), 1-11.

Google Scholar

[20] Denysov, Yu.P., Klymenko, V.V., Martynenko, V.V., & Rybicki, S. (2017). Technology for development of methane-hydrate deposits jointly with receiving fresh water. AGH DRILLING, OIL, GAS, 34(2), 531-542.

DOI: 10.7494/drill.2017.34.2.531

Google Scholar

[21] Bondarenko, V., Lozynskyi, V., Sai, K., & Anikushyna, K. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 27-32. https://doi.org/10.1201/b19901-6.

DOI: 10.1201/b19901-6

Google Scholar

[22] Makogon Y.F., Holditch S.A., & Makogon T.Y. (2007). Natural gas-hydrates – a potential energy source for the 21st century. J Petrol Sci Eng., (56), 14-31.

DOI: 10.1016/j.petrol.2005.10.009

Google Scholar

[23] Duc N.G., Chauvy F., & Herri J.-M. (2007). CO2 Capture by Hydrate crystallization – A potential Solution for Gas emission of Steelmaking Industry. Energy Conversion and Management (48), 1313-1322.

DOI: 10.1016/j.enconman.2006.09.024

Google Scholar

[24] Torré, J.P., Dicharry, C, Ricaurte, M, Daniel-David, D., & Broseta D. (2011). CO2 capture by hydrate formation in quiescent conditions: in search of efficient kinetic additives. Energy Procedia, (4).621-628.

DOI: 10.1016/j.egypro.2011.01.097

Google Scholar

[25] Gaurina-Međimurec, N., Novak-Mavar, K., & Majić, M. (2018). CCS technology: overview of projects, technology and monitoring. Rudarsko Geolosko Naftni Zbornik, 33(2), 1-14. https://doi.org/10.17794/rgn.2018.2.1.

DOI: 10.17794/rgn.2018.2.1

Google Scholar

[26] Goel, N. (2006). In situ methane hydrate dissociation with carbon dioxide sequestration: Current knowledge and issues. J. Petrol. Sci.Eng., (51), 169-184.

DOI: 10.1016/j.petrol.2006.01.005

Google Scholar

[27] Qing, Yuan, Chang, Yu Sun, & Bei Liu (2013). Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2. Energy Conversion and Management, 3(67), 257-264.

DOI: 10.1016/j.enconman.2012.11.018

Google Scholar

[28] Gaurina-Međimurec, N., & Novak Mavar, K. (2017). Depleted hydrocarbon reservoirs and CO2 injection wells – CO2 leakage assessment. Rudarsko Geolosko Naftni Zbornik, 32(2), 15-26. https://doi.org/10.17794/rgn.2017.2.3.

DOI: 10.17794/rgn.2017.2.3

Google Scholar

[29] Vulin, D., Gaćina, M., & Biličić, V. (2018). Slim-tube simulation model for CO2 injection eor. Rudarsko Geolosko Naftni Zbornik, 33(2), 37-48. https://doi.org/10.17794/rgn.2018.2.4.

DOI: 10.17794/rgn.2018.2.4

Google Scholar

[30] Bondarenko, V., Maksymova, E., & Koval, O. (2013). Genetic classification of gas hydrates deposits types by geologic-structural criteria. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 115-119.

DOI: 10.1201/b16354-20

Google Scholar

[31] Koltun, P., & Klymenko, V. (2016). Methane hydrates – Australian perspective. Mining of Mineral Deposits, 10(4), 11-18. https://doi.org/10.15407/mining10.04.011.

DOI: 10.15407/mining10.04.011

Google Scholar

[32] Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hydrates formation from gaseous mixtures of various compositions. Annual Scientific-Technical Colletion - Mining of Mineral DepositsMining of Mineral Deposits, 203-205.

DOI: 10.1201/b16354-36

Google Scholar

[33] Bondarenko, V., Sai, K., Ganushevych, K., & Ovchynnikov, M. (2015). The results of gas hydrates process research in porous media. New Developments in Mining Engineering 2015, 123-127.

DOI: 10.1201/b19901-23

Google Scholar

[34] Roux, G.M. (1968). The rate of formation of CH2ClF (F-31) hydrate in a continious stirred reactor. Revers osmosis membrane research, (369), 24.

Google Scholar

[35] Pangborn, J.B., & Barduhn, J. (1976). The Kinetics of Methyl Bromide Hydrate Formation. Desalination, (8), 564-573.

DOI: 10.1016/s0011-9164(00)82013-5

Google Scholar

[36] Gaillard, C., Monfort, J.P., & Peytavy, J. (1996). Formation and growth kinetics of natural gas hydrate. International conference on natural gas hydrates №2, Toulouse, FRANCE, 183-190.

Google Scholar

[37] Gaillard, C., Monfort, J.-P., & Peytavy, J.-L. (2016). Investigation of Methane Hydrate Formation in a Recirculating Flow Loop: Modeling of the Kinetics and Tests of Efficiency of Chemical Additives on Hydrate Inhibition. Oil & Gas Science and Technology Ð Rev. IFP, 54(3), 365-374.

DOI: 10.2516/ogst:1999033

Google Scholar

[38] Klymenko, V.V. (2012) Naukovo-tekhnichni osnovy hazohidratnoyi tekhnolohiyi (termodynamika ta kinetyka protsesiv, skhemni rishennya): avtoref. dys. dokt. tekhn. nauk: 05.14.06.

Google Scholar

[39] Zare Nezhad, B., &Varaminian, F. (2012). A generalized macroscopic kinetic model for description of gas hydrate formation processes in isothermal-isochoric systems. Energy Convers Manage, (57), 125-130.

DOI: 10.1016/j.enconman.2011.12.015

Google Scholar

[40] Meindinyo, R.-E., & Svartaas, T. (2016). Gas Hydrate Growth Kinetics: A Parametric Study. Energies, 9(12), 1021.

DOI: 10.3390/en9121021

Google Scholar

[41] Cherskij, H.B. & Mihajlov, H.E. (1990). Razmer ravnovesnyh kriticheskih zarodyshej gazovyh gidratov. DAN SSSR, 312(4), 968-971.

Google Scholar

[42] Kashchiev, D., & Firoozabadi, A. (2002). Nucleation of gas hydrates. J. Crystal Growth., (243), 476-489.

DOI: 10.1016/s0022-0248(02)01576-2

Google Scholar

[43] Verigin, A.N., Shhupljak, I.A., & Mihalev, M.F. (1986). Kristallizacija v dispersnyh sistemah: Inzhenernye metody rascheta, L.: Himija.

Google Scholar

[44] Vadzinskij, R.N. (2001). Spravochnik po verojatnostnym raspredelenijam. SPb.: Nauka.

Google Scholar

[45] Buhina, M.F. (1973). Kristalizacija kauchukov i rezin. M.: Himija.

Google Scholar

[46] Illner, R. (2007). Modeling with dynamical systems and kinetic equations. Riv. Mat. Univ. Parma 6(7), 199-243.

Google Scholar