Assembly and Optical Properties of Metal Nanoparticles

Article Preview

Abstract:

In this paper, the deposition and optical properties of charge-stabilized gold nanoparticles on silicon oxide substrates is studied, which have been derivatised with (aminopropyl) triemethoxysilane. Monodispersed charged-stabilized colloidal gold nanoparticles with diameters between 20-150 nm were prepared and their self-assembly and optical properties on silica substrates is studied. Atomic force microscopy (AFM) is employed to investigate the nanoparticle monolayers ex situ. Analysis of AFM images provide evidence that the formation of the colloidal nanoparticle monolayers is governed by random sequential adsorption. The results indicate that the ionic strength of the suspension influences the spatial distribution of the nanoparticles. For all sizes of the Au nanoparticles tested, optical simulations of extinction coefficients made by finite-difference time domain (FDTD) indicate a resonance peak in the range of 510-600 nm wavelength of the visible range of the electromagnetic spectrum. The results indicate a simple and inexpensive approach of assembly of plasmonic nanostructures that can find applications in metamaterials and light waveguides.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 294)

Pages:

3-10

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. M. Gerardy and M. Ausloos, Phys. Rev. B 25, 4204 (1982).

Google Scholar

[2] J. J. Penninkhof, A. Polman, L. A., Sweatlock, S. A. Maier, H. A. Atwater, A. M. Vredenberg, and B. J. Kooi, Appl. Phys. Lett. 83, 4137 (2003).

DOI: 10.1063/1.1627936

Google Scholar

[3] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).

Google Scholar

[4] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, Science 277, 1078 (1997).

DOI: 10.1126/science.277.5329.1078

Google Scholar

[5] R. P. Cowbum, J. Phys. D 33, R1 (2000).

Google Scholar

[6] M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, Optics letters, Vol. 23, No. 17, (1998) 1331.

Google Scholar

[7] M. Ambati, S.H. Nam, E.U. Avila, D. A. Genov, G.Bartal, and X. Zhang, Nano Lett., 8 (11) (2008) 3998.

DOI: 10.1021/nl802603r

Google Scholar

[8] J. H. Park, Y.T. Lim, O. O. Park, J. K. Kim, J.W. Yu, and Y. C. Kim, Chem. Mater. 16 (2004) 688.

Google Scholar

[9] K. R. Catchpole and S. Pillai, Journal of Luminescence 121, 315 (2006).

Google Scholar

[10] S. Kim, S. Na, J. Jo, D. Kim and Y. Nah, App. Phys. Lett. 93 (2008) 073307.

Google Scholar

[11] A. J. Haes, S. Zou, G.C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B, 108 (2004) 6961.

Google Scholar

[12] L. Ann Bauer, N. S. Birenbaum and G. J. Meyer, Journal of Mat. Chemistry, 14, 517 (2004).

Google Scholar

[13] S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Res Pharm Sci.  9, 6 (2014) 385.

Google Scholar

[14] Marek Grzelczak, Jan Vermant, Eric M. Furst, and Luis M. Liz-Marzán, ACS Nano, 4 (7), (2010) 3591.

DOI: 10.1021/nn100869j

Google Scholar

[15] George M. Whitesides, Bartosz Grzybowski, Science, Vol. 295, Issue 5564, (2002) 2418.

Google Scholar

[16] S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, Phys. Rev B 65, 193408 (2002).

Google Scholar

[17] Y. Tanaka, G. Obara, A. Zenidaka, N. N Nedyalkov, M. Terakawa, and Minoru Obara, Opt. Exp 18, 27228 (2010).

DOI: 10.1364/oe.18.027226

Google Scholar

[18] Huang T, Browning LM, Xu XHN. Nanoscale. (2012); 4:2797–2812.

Google Scholar

[19] Huang T, Nallathamby PD, Gillet D, Xu XHN. Anal Chem. (2007); 79:7708–7718.

Google Scholar

[20] Ray PC, Fan Z, Crouch RA, Sinha SS, Pramanik A. Chem Soc Rev. (2014); 43:6370–6404.

Google Scholar

[21] Huang T, Xu XHN. Nanoscale. (2011); 3:3567–3572.

Google Scholar

[22] Kern AM, Zhang D, Brecht M, Chizhik AI, Failla AV, Wackenhut F, Meixner AJ. Chem Soc. Rev. (2014); 43:1263–1286.

DOI: 10.1039/c3cs60357a

Google Scholar

[23] Huang T, Nallathamby PD, Xu XHN. J Am Chem Soc. (2008); 130:17095–17105.

Google Scholar

[24] Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Duyne RP. Nat Mater. (2008); 7:442–453.

Google Scholar

[25] Xu XHN, Chen J, Jeffers RB, Kyriacou SV. Nano Lett. (2002); 2:175–182.

Google Scholar

[26] Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Acc Chem Res. (2008); 41:1578–1586.

Google Scholar

[27] Browning LM, Huang T, Xu XHN. Interface Focus. (2013); 3:20120098.

Google Scholar