Microstructural and Hardness Evolution of New Developed OPH Steels

Article Preview

Abstract:

Nowadays, by increase in using structural materials, the high temperature properties of these materials are became an important issue within different aspects of engineering. The new Oxide Precipitation Hardened (OPH) steel generated by the authors based on Fe-Al-O matrix which prepared by mechanical alloying and hot consolidation. These new OPH steels showed a better oxidation resistant and creep, compare to similar ones. In order to investigate the thermomechanical and microstructure of these materials, a series of different tests were performed on three different OPH steels variant which developed and manufactured by the authors. The results show that the heating temperature has a significant influence on these properties while almost total recrystallization of grains and subgrains were observed during the investigation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 294)

Pages:

92-97

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Shankar Raoa, R.G. Baligidadb, V.S. Rajaa, Effect of Al content on oxidation behaviour of ternary Fe–Al–C alloys, Intermetallics, 10 (2002) 73–84,.

DOI: 10.1016/S0966-9795(01)00106-6

Google Scholar

[2] Liu CT, Stiegler JO, Fores FH, Ordered intermetallics. In:Metals handbook, vol.2. Metals Park (OH) ASM Int. 1990. p.920.

Google Scholar

[3] De Van JH, Tortorelli PF, Behavior of iron aluminides in oxidizing and oxidizing/sulfidizing environments, Materials Science and Engineering A, 153 (1992) 2, 573-577,.

DOI: 10.1016/0921-5093(92)90253-W

Google Scholar

[4] Tortorelli PF, Natesan K. Critical factors affecting the high-temperature corrosion performance of iron aluminides. Materials Science and Engineering A, 258 (1998) 2, 115–125,.

DOI: 10.1016/S0921-5093(98)00924-1

Google Scholar

[5] U. Prakash, R.A. Buckley, H. Jones, C.M. Sellars, Structure and properties of ordered intermetallics on the Fe-Al system, ISIJ Int. 31 (1991) 10, 1113–1126,.

DOI: 10.1016/0142-1123(92)90522-E

Google Scholar

[6] O. Khalaj, B. Mašek, H. Jirkova, A. Ronesova, J. Svoboda, Investigation on New Creep and Oxidation Resistant Materials, Materials and technology, 49 (2015) 4, 173-179,.

DOI: 10.17222/mit.2014.210

Google Scholar

[7] O. Khalaj, B. Mašek, H. Jirková, J. Svobodá, D. Bublíková, Influence of Thermomechanical Treatment on Grain Growth Behaviour of New Fe-Al Based Alloys with fine Al2O3 Precipitates, Materials and technology, 51 (2017) 5, 759-768,.

DOI: 10.17222/mit.2016.232

Google Scholar

[8] M.A. Auger, V. de Castro, T. Leguey, A. Muñoz, R. Pareja, Microstructure and mechanical behavior of ODS and non-ODS Fe-14Cr model alloys produced by spark plasma sintering, Journal of Nuclear Materials, 436 (2013) 5, 68-75,.

DOI: 10.1016/j.jnucmat.2013.01.331

Google Scholar

[9] M. Kos, J. Ferces, M. Brnucko, R. Rudolf, I. Anzel, pressing of Partially Oxide-Dispersion-Strenghtened Copper using the ECAP Process, Materials and technology, 48 (2014) 3, 379-384, UDK 621.777.2:669.35'71.

Google Scholar

[10] M. Misovic, N. Tadic, M. Jacimovic, M. Janjic, Deformations and Velocities during the Cold Rolling of Aluminium Alloys, Materials and technology, 50 (2016) 1, 59-67,.

DOI: 10.17222/mit.2014.250

Google Scholar

[11] F. D. Fischer, J. Svoboda, P. Fratzl: A Thermodynamical Approach to Grain Growth and Coarsening, Phil. Mag. 83 (2003) 1075,.

DOI: 10.1080/0141861031000068966

Google Scholar

[12] Grajcar, Microstructure Evolution of Advanced High-Strength Trip-Aided Bainitic Steel, Materials and technology, 49 (2015) 5, 715-720,.

DOI: 10.17222/mit.2014.154

Google Scholar

[13] Sustarvic, I. Paulin, M. Godec, S. Glodez, M. Sori, J. Flasker, A. Korosec, S. Kores, G. Abramovic, DSC/TG of Al-based Alloyed Powders for P/M Applications, Materials and technology, 48 (2014) 4, 439-450, UDK 621.762.5:669.71.

Google Scholar

[14] P. Krautwasser, A. Czyrska-Filemonowitz, M. Widera, F. Carsughi: Thermal Stability of Dispersoids in Ferritic Oxide Strengthened Alloys, Mater. Sci. Eng. A, 177 (1994) 199,.

DOI: 10.1016/0921-5093(94)90491-X

Google Scholar

[15] F. Tehovnik, J. Burja, B. Podgornik, M. Godec, F. Vode, Microstructural Evolution of Inconel 625 during hot Rolling, Materials and technology, 49 (2015) 5, 899-904,.

DOI: 10.17222/mit.2015.274

Google Scholar

[16] Kocijan, I. Paulin, C. Donik, M. Hocevar, K. Zelic, M. Godec, Influence of Different Production Progresses on the Biodegradability of AN FeMn17 Alloy, Materials and technology, 50 (2016) 5, 805-811,.

DOI: 10.17222/mit.2016.055

Google Scholar

[17] H. Dong, L. Yu, Y. Liu, Ch. Liu, H. Li, J. Wu, Enhancement of tensile properties due to microstructure optimization in ODS steels by zirconium addition, Fusion Engineering and Design, 125 (2017), 402-406,.

DOI: 10.1016/j.fusengdes.2017.03.170

Google Scholar

[18] O. Khalaj, H. Jirková, B. Mašek, P. Hassasroudsari, T. Studecky, J. Svobodá, Using Thermomechanical Treatments to Improve Grain Growth of New-Generation ODS Alloys, Materials and technology, 52 (2018) 4, 475-482,.

DOI: 10.17222/mit.2017.148

Google Scholar