[1]
V. Shankar Raoa, R.G. Baligidadb, V.S. Rajaa, Effect of Al content on oxidation behaviour of ternary Fe–Al–C alloys, Intermetallics, 10 (2002) 73–84,.
DOI: 10.1016/S0966-9795(01)00106-6
Google Scholar
[2]
Liu CT, Stiegler JO, Fores FH, Ordered intermetallics. In:Metals handbook, vol.2. Metals Park (OH) ASM Int. 1990. p.920.
Google Scholar
[3]
De Van JH, Tortorelli PF, Behavior of iron aluminides in oxidizing and oxidizing/sulfidizing environments, Materials Science and Engineering A, 153 (1992) 2, 573-577,.
DOI: 10.1016/0921-5093(92)90253-W
Google Scholar
[4]
Tortorelli PF, Natesan K. Critical factors affecting the high-temperature corrosion performance of iron aluminides. Materials Science and Engineering A, 258 (1998) 2, 115–125,.
DOI: 10.1016/S0921-5093(98)00924-1
Google Scholar
[5]
U. Prakash, R.A. Buckley, H. Jones, C.M. Sellars, Structure and properties of ordered intermetallics on the Fe-Al system, ISIJ Int. 31 (1991) 10, 1113–1126,.
DOI: 10.1016/0142-1123(92)90522-E
Google Scholar
[6]
O. Khalaj, B. Mašek, H. Jirkova, A. Ronesova, J. Svoboda, Investigation on New Creep and Oxidation Resistant Materials, Materials and technology, 49 (2015) 4, 173-179,.
DOI: 10.17222/mit.2014.210
Google Scholar
[7]
O. Khalaj, B. Mašek, H. Jirková, J. Svobodá, D. Bublíková, Influence of Thermomechanical Treatment on Grain Growth Behaviour of New Fe-Al Based Alloys with fine Al2O3 Precipitates, Materials and technology, 51 (2017) 5, 759-768,.
DOI: 10.17222/mit.2016.232
Google Scholar
[8]
M.A. Auger, V. de Castro, T. Leguey, A. Muñoz, R. Pareja, Microstructure and mechanical behavior of ODS and non-ODS Fe-14Cr model alloys produced by spark plasma sintering, Journal of Nuclear Materials, 436 (2013) 5, 68-75,.
DOI: 10.1016/j.jnucmat.2013.01.331
Google Scholar
[9]
M. Kos, J. Ferces, M. Brnucko, R. Rudolf, I. Anzel, pressing of Partially Oxide-Dispersion-Strenghtened Copper using the ECAP Process, Materials and technology, 48 (2014) 3, 379-384, UDK 621.777.2:669.35'71.
Google Scholar
[10]
M. Misovic, N. Tadic, M. Jacimovic, M. Janjic, Deformations and Velocities during the Cold Rolling of Aluminium Alloys, Materials and technology, 50 (2016) 1, 59-67,.
DOI: 10.17222/mit.2014.250
Google Scholar
[11]
F. D. Fischer, J. Svoboda, P. Fratzl: A Thermodynamical Approach to Grain Growth and Coarsening, Phil. Mag. 83 (2003) 1075,.
DOI: 10.1080/0141861031000068966
Google Scholar
[12]
Grajcar, Microstructure Evolution of Advanced High-Strength Trip-Aided Bainitic Steel, Materials and technology, 49 (2015) 5, 715-720,.
DOI: 10.17222/mit.2014.154
Google Scholar
[13]
Sustarvic, I. Paulin, M. Godec, S. Glodez, M. Sori, J. Flasker, A. Korosec, S. Kores, G. Abramovic, DSC/TG of Al-based Alloyed Powders for P/M Applications, Materials and technology, 48 (2014) 4, 439-450, UDK 621.762.5:669.71.
Google Scholar
[14]
P. Krautwasser, A. Czyrska-Filemonowitz, M. Widera, F. Carsughi: Thermal Stability of Dispersoids in Ferritic Oxide Strengthened Alloys, Mater. Sci. Eng. A, 177 (1994) 199,.
DOI: 10.1016/0921-5093(94)90491-X
Google Scholar
[15]
F. Tehovnik, J. Burja, B. Podgornik, M. Godec, F. Vode, Microstructural Evolution of Inconel 625 during hot Rolling, Materials and technology, 49 (2015) 5, 899-904,.
DOI: 10.17222/mit.2015.274
Google Scholar
[16]
Kocijan, I. Paulin, C. Donik, M. Hocevar, K. Zelic, M. Godec, Influence of Different Production Progresses on the Biodegradability of AN FeMn17 Alloy, Materials and technology, 50 (2016) 5, 805-811,.
DOI: 10.17222/mit.2016.055
Google Scholar
[17]
H. Dong, L. Yu, Y. Liu, Ch. Liu, H. Li, J. Wu, Enhancement of tensile properties due to microstructure optimization in ODS steels by zirconium addition, Fusion Engineering and Design, 125 (2017), 402-406,.
DOI: 10.1016/j.fusengdes.2017.03.170
Google Scholar
[18]
O. Khalaj, H. Jirková, B. Mašek, P. Hassasroudsari, T. Studecky, J. Svobodá, Using Thermomechanical Treatments to Improve Grain Growth of New-Generation ODS Alloys, Materials and technology, 52 (2018) 4, 475-482,.
DOI: 10.17222/mit.2017.148
Google Scholar