Temperature-Dependent Plastic Deformation Behavior of Cu-Ni Alloys: Coupled Influence of Stacking Fault Energy and Short Range Clustering

Article Preview

Abstract:

The uniaxial tensile tests were conducted at different temperatures to explore the coupled influence of stacking fault energy (SFE) and short-range clustering (SRC) on the plastic deformation behavior of Cu-Ni alloys. The results demonstrate that the ultimate tensile strength and uniform elongation decrease with increasing temperature due to the competitive influence of SFE and SRC. Dynamic strain aging (DSA) effect is observed at 200 and 250°C, and such an effect becomes more notable with increasing Ni content. The occurrence of DSA effect is thought to be caused by pinning of moving dislocations by SRC and diffusing solute atoms. The plastic deformation mechanisms for Cu-Ni alloys is mainly governed by wavy slip of dislocations at different temperatures, since the SFE of Cu-Ni alloys are very high especially at high temperatures, and the effect of SRC can be nearly ignored.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 294)

Pages:

98-103

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.I. Hong, C. Laird, Mechanism of slip mode modification in F.C.C. solid solutions, Acta Metall. Mater. 38 (1990) 1581-1594.

DOI: 10.1016/0956-7151(90)90126-2

Google Scholar

[2] Z.R. Wang, Cyclic deformation response of planar-slip materials and a new criterion for the wavy-to-planar-slip transition, Philos. Mag. 84 (2004) 3-5.

DOI: 10.1080/14786430310001639824

Google Scholar

[3] P. Li, S.X. Li, Z.G. Wang, Z.F. Zhang, Fundamental factors on formation mechanism of dislocation arrangements in cyclically deformed fcc single crystals, Prog. Mater. Sci. 56 (2011) 328-377.

DOI: 10.1016/j.pmatsci.2010.12.001

Google Scholar

[4] Z.Y. Wang, D. Han, X.W. Li, Competitive effect of stacking fault energy and short-range clustering on the plastic deformation behavior of Cu-Ni alloys, Mater. Sci. Eng. A 679 (2017) 484-492.

DOI: 10.1016/j.msea.2016.10.064

Google Scholar

[5] D. Han, Z.Y. Wang, Y. Yan, F. Shi, X.W. Li, A good strength-ductility match in Cu-Mn alloys with high stacking fault energies: Determinant effect of short range ordering, Scr. Mater. 133 (2017) 59-64.

DOI: 10.1016/j.scriptamat.2017.02.010

Google Scholar

[6] C.B. Carter, I.L.F. Ray, On the stacking-fault energies of copper alloys, Philos. Mag. 35 (1977) 189-200.

Google Scholar

[7] H. Saka, Y, Sueki, T. Imura, On the intrinsic temperature dependence of the stacking-fault energy in copper-aluminium alloys, Philos. Mag. A 37 (1978) 273-289.

DOI: 10.1080/01418617808235440

Google Scholar

[8] R. Reihsner, W. Pfeiler, Atomic short-range order in CuMn alloys. J. Phys. Chem. Solids 46 (1985) 1431-1445.

DOI: 10.1016/0022-3697(85)90083-6

Google Scholar

[9] R.A. Mulford, U.F. Kocks, New observations on the mechanisms of dynamic strain aging and of jerky flow, Acta Metall. 27 (1979) 1125-1134.

DOI: 10.1016/0001-6160(79)90130-5

Google Scholar

[10] F. Springer, A. Nortmann, C. Schwink, A study of basic processes characterizing dynamic strain ageing, Phys. Stat. Sol. (a) 170 (1998) 63-81.

DOI: 10.1002/(sici)1521-396x(199811)170:1<63::aid-pssa63>3.0.co;2-f

Google Scholar

[11] A. Nortmann, C. Schwink, Characteristics of dynamic strain ageing in binary f.c.c. copper alloys—II. Comparison and analysis of experiments on Cu-Al and Cu-Mn, Acta Mater. 45 (1997) 2051-2058.

DOI: 10.1016/s1359-6454(96)00293-5

Google Scholar

[12] Y. Dastur, W. Leslie, Mechanism of work hardening in Hadfield manganese steel, Metall. Mater. Trans. A 12 (1981) 749-759.

DOI: 10.1007/bf02648339

Google Scholar

[13] J.S. Ha, S.I. Hong, Temperature dependent slip mode modification in Cu-Al solid solution alloy single crystals, Mater. Sci. Eng. A 565 (2013) 9-12.

DOI: 10.1016/j.msea.2012.12.044

Google Scholar

[14] S. Qu, X.H. An, H.J. Yang, C.X. Huang, Q.S. Zhang, Z.G. Wang, S.D. Wu, Z.F. Zhang, Microstructural evolution and mechanical properties of Cu-Al alloys subjected to equal channel angular pressing, Acta Metall. 57 (2009) 1586-1601.

DOI: 10.1016/j.actamat.2008.12.002

Google Scholar

[15] X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langon, The influence of stacking fault energy on the mechanical properties of nanostructured Cu and Cu-Al alloys processed by high-pressure torsion, Scr. Mater. 64 (2011) 954-957.

DOI: 10.1016/j.scriptamat.2011.01.041

Google Scholar

[16] V. Gerold and H.P. Karnthaler, On the origin of planar slip in F.C.C. alloys, Acta Metall. 37 (1989) 2177-2183.

DOI: 10.1016/0001-6160(89)90143-0

Google Scholar

[17] S.H. Fu, Q.C. Zhang, Q. Hu, M. Gong, P.T. Cao, H.W. Liu, The influence of temperature on the PLC effect in Al-Mg alloy, Sci. Chin. Technol. Sci. 54 (2011) 1389-1393.

DOI: 10.1007/s11431-011-4398-9

Google Scholar

[18] S.I. Hong, Influence of dynamic strain aging on the dislocation substructure in a uniaxial tension test, Mater. Sci. Eng. 79 (1986) 1-7.

DOI: 10.1016/0025-5416(86)90380-0

Google Scholar