[1]
Vernhes, L., Lee, D. A., Poirier, D., Li, D., & Klemberg-Sapieha, J. E. (2013). HVOF coating case study for power plant process control ball valve application. Journal of thermal spray technology, 22(7), 1184-1192.
DOI: 10.1007/s11666-013-9978-8
Google Scholar
[2]
Chang, Shu-Shuo, Hsieh-Chen Wu, and Chun Chen. Impact wear resistance of stellite 6 hardfaced valve seats with laser cladding., Materials and Manufacturing processes 23.7 (2008): 708-713.
DOI: 10.1080/10426910802317102
Google Scholar
[3]
Bai, Mingwen, Liam Reddy, and Tanvir Hussain. Experimental and thermodynamic investigations on the chlorine-induced corrosion of HVOF thermal sprayed NiAl coatings and 304 stainless steels at 700° C., Corrosion Science 135 (2018): 147-157.
DOI: 10.1016/j.corsci.2018.02.047
Google Scholar
[4]
Wang, X., Feng, X., Lu, C., Yi, G., Jia, J., & Li, H. (2018). Mechanical and tribological properties of plasma sprayed NiAl composite coatings with addition of nanostructured TiO 2/Bi 2 O 3. Surface and Coatings Technology.
DOI: 10.1016/j.surfcoat.2018.05.055
Google Scholar
[5]
Tahari, M., M. Shamanian, and M. Salehi. Microstructural and morphological evaluation of MCrAlY/YSZ composite produced by mechanical alloying method., Journal of Alloys and Compounds 525 (2012): 44-52.
DOI: 10.1016/j.jallcom.2012.01.161
Google Scholar
[6]
Tahari, Mostafa, M. Shamanian, and M. Salehi, The effect of heat treatment and thermal spray processes on the grain growth of nanostructured composite CoNiCrAlY/YSZ powders., Journal of Alloys and Compounds 646 (2015): 372-379.
DOI: 10.1016/j.jallcom.2015.06.020
Google Scholar
[7]
Hatami, M., Naeimi, F., Shamanian, M., & Tahari, M. (2018). High-Temperature Oxidation Behavior of Nano-structured CoNiCrAlY–YSZ Coatings Produced by HVOF Thermal Spray Technique. Oxidation of Metals, 90(1-2), 153-167.
DOI: 10.1007/s11085-017-9829-y
Google Scholar
[8]
Hearley, J. A., J. A. Little, and A. J. Sturgeon. The effect of spray parameters on the properties of high velocity oxy-fuel NiAl intermetallic coatings., Surface and coatings technology123.2-3 (2000): 210-218.
DOI: 10.1016/s0257-8972(99)00511-3
Google Scholar
[9]
Hatami, M., D. D. Ganji, and M. Gorji-Bandpy. Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery., Energy Conversion and Management 97 (2015): 26-41.
DOI: 10.1016/j.enconman.2015.03.032
Google Scholar
[10]
Hatami, M., D. D. Ganji, and Mofid Gorji-Bandpy. Investigations of fin geometry on heat exchanger performance by simulation and optimization methods for diesel exhaust application., Neural Computing and Applications 27.6 (2016): 1731-1747.
DOI: 10.1007/s00521-015-1973-1
Google Scholar