Strengthening Mechanism and Thermal Stability of Spray Formed H13 Steel

Article Preview

Abstract:

The aim of this work is to study the strengthening mechanism and thermal stability of spray formed H13 steel. The microstructure and hardness of spray formed H13 steels are investigated by electron microscopy, transmission electron microscopy and hardness measurementscanning. The calculated results demonstrate that tensile strength, impact energy and hardness values of sprayed-formed H13 steel are higher than that of as-cast H13 steel when the tempering temperature is 600 °C after quenched at 1050 °C. Compared with as-cast H13 steels, tempered spray-formed H13 steels possess supernal high-temperature temper resistant stability. The chemical composition of the carbides in spray-formed steels is V and Cr rich spherical carbides are hardly influenced by the tempering treatment.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 295)

Pages:

49-56

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Xiang J.Z, Zhang Y, Fan W.J, et al. Iron Steel Res. Int. 19(2012): 20-35.

Google Scholar

[2] Guo B, Ge C.C, Xu Y, et al. J. Iron Steel Res. Int. 20(2013): 69-74.

Google Scholar

[3] Régis D. C, Claudemiro B, Cláudio S. J. Alloy. Compd. 615 (2014): S602-S606.

Google Scholar

[4] Liu L L, Pan Q L, Wang X D, et al. J. Alloy. Compd. 735 (2018): 261-276.

Google Scholar

[5] Hou L.G, Cui C, ZhangJ.S. Mater. Sci. Eng. A 527 (2010): 6400-6412.

Google Scholar

[6] Cava R.D, Bolfarini C, Kiminami C.S, et al. J. Alloy. Compd. 615 (2014): S602-S606.

Google Scholar

[7] Tang L L, Zhao Y H, Islamgaliev R K, et al. Mater. Sci. Eng., A 670 (2016): 280-291.

Google Scholar

[8] Zhang J X; Huang J F; Wang H B, etal. Acta Metal. Sinica50 (2014): 787-794.

Google Scholar

[9] Ma D.S, Zhou J, Chen Z.Z, et al. J. Iron Steel Res. Int. 16(2009): 56-60.

Google Scholar

[10] Ning A.G, Guo H.J, Chen X.C, et al. Mater. Trans. 56 (2015): 581-586.

Google Scholar

[11] Min Y.A, Wu X.C, Wang R, et al. J. Iron Steel Res. Int. 13(2006): 44-49.

Google Scholar

[12] Jacobsen S.D, Hinrichs R, Aguzzol C, et al. Surf. Coat. Tech. 286 (2016): 129-139.

Google Scholar

[13] Lin Y.J, Mchugh K.M, Zhou Y.Z, et al. Metall. Mater. Trans. A 38A (2007): 1634-1637.

Google Scholar

[14] Lin Y.J, McHugh K.M, ZhouY. Z, et al. Scripta Mater. 55 (2006): 581-584.

Google Scholar

[15] Kheirandish S, Saghafian H, Hedjazi J, et al. J. Iron Steel Res. Int. 17(2010): 40-45, 52.

Google Scholar

[16] Xie J.P, Cao F.Y, Wan M.H, et al. J. Henan Univ Sci. T. 37(2016): 0001-06(in Chinese).

Google Scholar

[17] Zhou Q.C, Wu X.C, Shi N.N, et al. Mater. Sci. Eng. A 528 (2011): 5696-5700.

Google Scholar

[18] Li T.S, Wang F.M, Li C.R, et al. J. Iron Steel Res. Int. 22(2015): 330-336.

Google Scholar

[19] Xiao J.M. Shanghai Scientific and Technical Publishers, (1980).

Google Scholar

[20] Unterweiser P.M, Boyer H.E, Kubbs J.J. ASM. Metals Park, USA. Ohio, 44073, (1982).

Google Scholar

[21] Miyamoto G, Oh J.C, Hono K, et al. Acta Mater. 55 (2007): 5027-5038.

Google Scholar