Design of Streamline Dies for Drawing Driven by Fracture

Article Preview

Abstract:

This paper presents an efficient analytical method for design of streamline dies driven by fracture. The method is based on Bernoulli’s theorem relating pressure and velocity along any streamline extended to ideal flows in plasticity. The Cockroft-Latham criterion is adopted to predict the initiation of ductile fracture. In order to apply the method developed, it is not necessary to know the solution to the boundary value problem of plasticity. The final result is a simple relation between geometric parameters of the process and the constitutive parameter involved in the fracture criterion. Since the latter is supposed to be known for a given material, the relation determines a safe domain for drawing without fracture.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 295)

Pages:

85-89

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Richmond and M.L. Devenpeck, in: Proc. 4th U.S. Nat. Congr. Appl. Mech., edited by R.M. Rosenberg, volume 2, ASME, New York, p.1053 (1962).

Google Scholar

[2] O. Richmond and H.L. Morrison: J. Mech. Phys. Solids Vol. 15 (1967), p.195.

Google Scholar

[3] O. Richmond, in: Theory of streamlined dies for drawing and extrusión, edited by F.P.J. Rimrott, J. Schwaighofer, Mechanics of the Solid State, University of Toronto Press, Toronto p.154 (1968).

DOI: 10.3138/9781487575199-014

Google Scholar

[4] K. Chung and O. Richmond: Int. J. Mech. Sci. Vol. 34 (1992), p.617.

Google Scholar

[5] K. Chung and O. Richmond: Trans. ASME J. Appl. Mech. Vol. 61 (1994), p.176.

Google Scholar

[6] K. Chung and S. Alexandrov: Appl. Mech. Rev. Vol. 60 (2007), p.316.

Google Scholar

[7] A.G. Atkins: J. Mater. Process. Technol. Vol. 56 (1996), p.609.

Google Scholar

[8] M.A. Shabara, A.A. El-Domiaty and M.A. Kandil: J. Mater. Eng. Perform. Vol. 5 (1996), p.478.

Google Scholar

[9] R. Hambli and M. Reszka: Int. J. Mech. Sci. Vol. 44 (2002), p.1349.

Google Scholar

[10] M.D. Cockroft and D.J. Latham: J. Inst. Metals Vol. 96 (1968), p.33.

Google Scholar

[11] S.I. Oh, C.C. Chen and S. Kobayashi: Trans. ASME J. Eng. Ind. Vol. 101 (1979), p.36.

Google Scholar

[12] S.E. Clift, P. Hartley, C.E.N. Sturgess and G.W. Int. J. Mech. Sci. Vol. 32 (1990), p.1.

Google Scholar

[13] D.-C. Ko, B.-M. Kim and J.-C. Choi: J. Mater. Process. Technol. Vol. 62 (1996), p.166.

Google Scholar

[14] M. Jain, J. Allin and D.J. Lloyd: Int. J. Mech. Sci. Vol. 41 (1999), p.1273.

Google Scholar

[15] A.T.J. Domanti, D.J. Horrobin and J. Bridgwater: Int. J. Mech. Sci. Vol. 44 (2002), p.1381.

Google Scholar

[16] J. Landre, A. Pertence, P.R. Cetlin, J.M.C. Rodrigues. and P.A.F. Martins: Finite Elem. Anal. Des. Vol. 39 (2003), p.175.

Google Scholar

[17] K. Komori: Int. J. Mech. Sci. Vol. 45 (2003), p.141.

Google Scholar

[18] X. Duan, X. Velay and T. Sheppard: Mater. Sci. Eng. Vol. 369A (2004), p.66.

Google Scholar

[19] R.B. Figueiredo, P.R. Cetlin and T.G. Langdon: Mater. Sci. Eng.Vol. 518A (2009), p.124.

Google Scholar

[20] B. Avitzur: Trans. ASME J. Eng. Ind. Vol. 90 (1968), p.79.

Google Scholar

[21] B. Avitzur and J.C. Choi: Trans. ASME J. Eng. Ind. Vol. 108 (1986), p.317.

Google Scholar

[22] R.T. Shield: J. Mech. Phys. Solids Vol. 3 (1955), p.246.

Google Scholar

[23] S.N. Samy, C.A.R. Saleh and A.R. Ragab: Proc. IMechE Part C: J. Mech. Eng. Sci. Vol. 220 (2006), p.1201.

Google Scholar

[24] K. Komori: Int. J. Mech. Sci. Vol. 41 (1999), p.1499.

Google Scholar

[25] O. Richmond and S. Alexandrov: Compt. rendus de l'Académie des Sci. Ser. II b. 328 (2000), p.835.

Google Scholar

[26] R. Hill: The Mathematical Theory of Plasticity (Clarendon Press, Oxford 1950).

Google Scholar

[27] H.F. Weinberger: Meccanica Vol. 38 (2003), p.547.

Google Scholar