Optimization of Microwave-Assisted Extraction Process by Response Surface Methodology of Natural Anthocyanins from Rhodomyrtus tomentosa (Ait.) Hassk

Article Preview

Abstract:

Rhodomyrtus tomentosa (Ait.) Hassk is a fruit that is gradually becoming popular in Vietnam with superior bioactive compounds. This study aimed to determine the natural anthocyanins from Rhodomyrtus tomentosa (Ait.) Hassk based on extracts and optimized RSM. The Box-Behnken design was shown the influence of the optimal conditions for the MAE procedure are 5.07 min, 206 W and 2.53 g/mL with the optimal anthocyanin content achieved Y = 133.88 mg/L, all reactions are within the threshold of the predicted value. The results are in line with the proposed model for the anthocyanin extraction (R2 = 0.9849).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 298)

Pages:

94-99

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.I. Hidalgo, M. Almajano, Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review. Antioxidants 6 (2017) 7.

DOI: 10.3390/antiox6010007

Google Scholar

[2] W. Liu, C. Yang, C. Zhou, Z. Wen, Xinrong Dong, An improved microwave-assisted extraction of anthocyanins from purple sweet potato in favor of subsequent comprehensive utilization of pomace, Food and Bioproducts Processing, 115 (2019) 1-9.

DOI: 10.1016/j.fbp.2019.02.003

Google Scholar

[3] P. Wu, G. Ma, N. Li, Q. Deng, Y. Yin, R. Huang, Investigation of in vitro and in vivo antioxidant activities of flavonoids rich extract from the berries of Rhodomyrtus tomentosa (Ait.) Hassk. Food Chem. 173 (2015) 194–202.

DOI: 10.1016/j.foodchem.2014.10.023

Google Scholar

[4] S. Zhang, L. You, W. Chen, W. Luo, C. Cui, M. Zhao, J. Ren, Antioxidant capacity of anthocyanins from Rhodomyrtus tomentosa (Ait.) and identification of the major anthocyanins. Food Chem. 139 (2013) 1–8.

DOI: 10.1016/j.foodchem.2013.01.107

Google Scholar

[5] Y. Sun, X. Liao, Z. Wang, X. Hu, & F. Chen, Optimization of microwave-assisted extraction of anthocyanins in red raspberries and identification of anthocyanin of extracts using high-performance liquid chromatography - Mass spectrometry. Eur. Food Res. Technol. 225 (2007) 511–523.

DOI: 10.1007/s00217-006-0447-1

Google Scholar

[6] T.P. Dao, D.C. Nguyen, T.H. Tran, P.V. Thinh, V.Q. Hieu, D.V.V. Nguyen, T.D. Nguyen, L.G. Bach, Modeling and optimization of the orange leaves oil extraction process by Microwave-assisted Hydro-distillation: The response surface method based on the central composite approach (RSM-CCD Model), Rasayan J. Chem., 12(2), 666-676(2019).

DOI: 10.31788/rjc.2019.1225107

Google Scholar

[7] D. Ryu, E. Koh, Application of response surface methodology to acidified water extraction of black soybeans for improving anthocyanin content, total phenols content and antioxidant activity, Food Chemistry, Volume 261, 30 September 2018, Pages 260-266.

DOI: 10.1016/j.foodchem.2018.04.061

Google Scholar

[8] V.T. Pham, H.T.T. Nguyen, D.T.C. Nguyen, H.T. N. Le, T.T. Nguyen, N.T.H. Le, K.T. Lim, T.D. Nguyen, T.V. Tran and L.G. Bach, Process Optimization by a Response Surface Methodology for Adsorption of Congo Red Dye onto Exfoliated Graphite-Decorated MnFe2O4 Nanocomposite: The Pivotal Role of Surface Chemistry, Processes 2019, 7, 305;.

DOI: 10.3390/pr7050305

Google Scholar

[9] T.P. Dao, D.C. Nguyen, Thien Hien Tran, Phan Van Thinh, Vu Quang Hieu, Dai Viet Vo Nguyen, Trinh Duy Nguyen, and Long Giang Bach, Modeling and optimization of the orange leaves oil extraction process by Microwave-assisted Hydro-distillation: The response surface method based on the central composite approach (RSM-CCD Model), Rasayan J. Chem., 12(2), 666-676(2019).

DOI: 10.31788/rjc.2019.1225107

Google Scholar

[10] T.N. Pham, B.P. Tran, T.H. Tran, D.C. Nguyen, T.N.P. Nguyen, T.Q. Nguyen, D.V.N. Vo, X.T. Le, D.T. Nguyen, L.G. Bach, Response surface modeling and Optimizing conditions for anthocyanins extraction from purple sweet potato (Ipomoea batatas (L.) Lam) grown in Lam Dong province, Vietnam, IOP Conference Series: Materials Science and Engineering, 479 (2019) 012012.

DOI: 10.1088/1757-899x/479/1/012012

Google Scholar

[11] H. Liu, L. Shen, X. Zheng, C. Liu, Q. Li, Q. Qin, X. Wang, H. Xue, & H. Xu, Effects of Microwave Power on Extraction Kinetic of Anthocyanin from Blueberry Powder considering Absorption of Microwave Energy. J. Food Qual. (2018) 1–13.

DOI: 10.1155/2018/9680184

Google Scholar

[12] R. Dibazar, G. Bonat Celli, M. S. L. Brooks, A. Ghanem, Optimization of ultrasound-assisted extraction of anthocyanins from lowbush blueberries (Vaccinium Angustifolium Aiton). J. Berry. Res. 5 (2015) 173–181.

DOI: 10.3233/jbr-150100

Google Scholar

[13] N. Anuar, A. F. Mohd Adnan, N. Saat, N. Aziz, R. Mat Taha, Optimization of extraction parameters by using response surface methodology, purification, and identification of anthocyanin pigments in melastoma malabathricum fruit. ‎Sci. World J, (2013). Article ID 810547, 10 pages.

DOI: 10.1155/2013/810547

Google Scholar