Formation and Corrosion Behavior of Nickel/Alumina Nanocomposites

Article Preview

Abstract:

Ni nanopillars (Ni NPs) composite materials formation technology was presented. The morphological and structural properties of the composite material were investigated using scanning electron microscopy, atomic force microscopy, X-ray diffraction. The corrosion resistance of the nanocomposite materials has been studied by potentiodynamic polarization curves analysis. The composite represents the array of vertically ordered Ni NPs with the identical size in alumina matrix. XRD investigation indicates that Ni NPs are polynanocrystalline material. It has been shown that Ni NPs and the composite material have sufficient corrosion resistance in a 0.9% aqueous NaCl solution. Porous alumina matrix is the neutral and protective component of the composite. These nanocomposite materials can be excellent candidates for practical use in different applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

100-106

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.I. Vorobyova, E.A. Outkina, O.M. Komar, Study of metal pillar nanostructure formation with thin porous alumina template, Thin Sol. Films, 548 (2013) 109-117.

DOI: 10.1016/j.tsf.2013.09.016

Google Scholar

[2] Y. Zhang, M. Zhang, Z. Cai, M. Chen, F. Cheng, A novel electrochemical sensor for formaldehyde based on palladium nanowire arrays electrode in alkaline media, Electrochim. Acta, 68 (2012) 172-177.

DOI: 10.1016/j.electacta.2012.02.050

Google Scholar

[3] A.I. Vorobyova, E.A. Outkina, A.A. Khodin, Nickel/Alumina nanocomposites by ac electrochemical processing, Appl. Phys. A. Mater. Sci.& Proces. 122 (2016) 1-11.

DOI: 10.1007/s00339-016-9611-z

Google Scholar

[4] M.P. Proenca, C.T. Sousa, J. Ventura, M. Vazquez, J.P. Araujo, Distinguishing nanowire and nanotube formation by the deposition current transients, Nanoscale Res. Lett. 7 (2012) 1-9.

DOI: 10.1186/1556-276x-7-280

Google Scholar

[5] G.Z. Meng, L. Yang, Y.W. Shao, Effect of microstructures on corrosion behavior of nickel coatings: (II) competitive effect of grain size and twins density on corrosion behavior. J. Mater. Sci. Technol. 32 (2016) 465–469.

DOI: 10.1016/j.jmst.2015.11.013

Google Scholar

[6] D.I. Tishkevich, S.S. Grabchikov, L.S. Tsybulskaya, V.S. Shendyukov, S.S. Perevoznikov, S.V. Trukhanov, E.L. Trukhanova, A.V. Trukhanov, D.A. Vinnik, Electrochemical deposition regimes and critical influence of organic additives on the structure of Bi films, J. of All. and Comp. 735 (2018) 1943-1948.

DOI: 10.1016/j.jallcom.2017.11.329

Google Scholar

[7] L.P. Wang, J.Y. Zhang, Y. Gao, Q.J. Xue, L.T. Hu, T. Xu, Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution, Sc. Mater. 55 (2006) 657-660.

DOI: 10.1016/j.scriptamat.2006.04.009

Google Scholar

[8] S. Goodwin, C. Peterson, C. Hoh, C. Bittner, Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy, J. Magn. Magn. Mater. 194 (1999) 132-139.

DOI: 10.1016/s0304-8853(98)00584-8

Google Scholar

[9] J. Liu, X. Zhu, J. Sudagar, W. Diao and S. Yu, Increased corrosion resistance of closed-cell aluminum foams by electroless Ni-P coatings, Mater. Trans. 52 (2011) 2282-2284.

DOI: 10.2320/matertrans.m2011205

Google Scholar

[10] Y. Hirota, Y. Akiyama, Y. Izumi, and S. Nishijima, Fundamental study for development magnetic drug delivery system, Phys. C Supercond. its Appl. 469(2009) 1853–1856.

DOI: 10.1016/j.physc.2009.05.248

Google Scholar

[11] D.L. Shimanovich, A.I. Vorobjova, D.I. Tishkevich, A.V. Trukhanov, M.V. Zdorovets, A.L. Kozlovskiy, Preparation and morphology-dependent wettability of porous alumina membranes, Beilstein J. Nanotechnol. 9 (2018) 1423-1436.

DOI: 10.3762/bjnano.9.135

Google Scholar

[12] H. Pan, B. Liu, J. Yi, C. Poh, S. Lim, J. Ding, Y. Feng, C.H.A. Huan, J. Lin, Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties, J. Phys. Chem. B. 109 (2005) 3094.

DOI: 10.1021/jp0451997

Google Scholar

[13] M. Danişman The corrosion behavior of nanocrystalline nickel based thin films, Mater. Chem. Phys. 171 (2016) 276-280.

Google Scholar

[14] B.I. Onyeachu, X. Peng, E.E. Oguzie, C.E. Ogukwe, I. Digbo, Characterizing the electrochemical corrosion behaviour of a Ni–28wt.%Al composite coating in 3.5%NaCl solution, Port. Electrochim. Acta. 33 (2015) 69-83.

DOI: 10.4152/pea.pea.201502069

Google Scholar

[15] L.Y. Qin, J.Sh. Lian, Q. Jiang, Effect of grain size on corrosion behavior of electrodeposited bulk nanocrystalline Ni, Trans. Nonferrous. Met. Soc. China. 20 (2010) 82–89.

DOI: 10.1016/S1003-6326(09)60101-1

Google Scholar

[16] X. Wang, B. Wang, L. Zhang, C. Yang, Y. Yang, Effect of different welding processes on electrochemical and corrosion behavior of pure nickel in 1 M NaCl solution, Metals (Basel) 7 (2017) 532.

DOI: 10.3390/met7120532

Google Scholar