[1]
K. Kaiser, M. Schmid, M. Schlummer, Recycling of Polymer-Based Multilayer Packaging: A Review, Recycling, 3 (1) (2018) 1.
DOI: 10.3390/recycling3010001
Google Scholar
[2]
M. Yuhui, Changing Tetra Pak: from waste to resource, Science Progress, 101 (2018) 161-170.
DOI: 10.3184/003685018x15215434299329
Google Scholar
[3]
A. Korkmaz, J. Yanik, M. Brebu, C. Vasile, Pyrolysis of the tetra pak, Waste Management, 29 (2009) 2836-2841.
DOI: 10.1016/j.wasman.2009.07.008
Google Scholar
[4]
S. Lewandowski, V. Rejsek-Riba, A. Berne`s, S. Perraud, C. Lacabanne, Influence of the environment during a photodegradation of multilayer films, Journal of Applied Polymer Science, 133 (2016) 1-7.
DOI: 10.1002/app.44075
Google Scholar
[5]
A.K. Zykova, P.V. Pantyukhov, N.N. Kolesnikova, T.V. Monakhova, A.A. Popov, Influence of filler particle size on physical properties and biodegradation of biocomposites based on low-density polyethylene and lignocellulosic fillers, J. Polym. Environ., 26 (2018) 1343-1354.
DOI: 10.1007/s10924-017-1039-9
Google Scholar
[6]
E.A. Grigoreva, N.N. Kolesnikova, A.A. Popov, A.A. Olkhov, Biological degradation of gas-filled composite materials on the base of polyethylene, IOP Conf. Ser.: Mat. Sci. Eng., 286 (2018) 012009.
DOI: 10.1088/1757-899x/286/1/012009
Google Scholar
[7]
A. Arkatkar, J. Arutchelvi, M. Sudhakar et al, Approaches to enhance the biodegradation of polyolefins, The Open Environmental Engineering Journal, 2 (2009) 68-80.
DOI: 10.2174/1874829500902010068
Google Scholar
[8]
E.E. Mastalygina, N.N. Kolesnikova, A.A. Popov, A.A. Olkhov, Environmental degradation study of multilevel biocomposites based on polyolefins, AIP Conf. Proc., 1683 (020143) (2015) 1-4.
DOI: 10.1063/1.4932833
Google Scholar
[9]
M.F. Muñoz-Vélez, M.A. Hidalgo-Salazar, J.H. Mina-Hernández, Effect of Content and Surface Modification of Fique Fibers on the Properties of a Low-Density Polyethylene (LDPE)-Al/Fique Composite. Polymers, 10 (2018) 1050.
DOI: 10.3390/polym10101050
Google Scholar
[10]
E.E. Mastalygina, A.A. Popov, Mechanical properties and stress-strain behaviour of binary and ternary composites based on polyolefins and vegetable fillers, Solid State Phenomena, 265 (2017) 221-226.
DOI: 10.4028/www.scientific.net/ssp.265.221
Google Scholar
[11]
L.M. Robeson, Polymer Blends: a Comprehensive Review, Hanser Publications, Munich, (2007).
Google Scholar
[12]
E.M. Khar'kova, D.I. Mendeleev, M.A. Guseva, V.A. Gerasin, Structure and properties of polymer–polymer composites based on biopolymers and ultra-high molecular weight polyethylene obtained via ethylene in situ polymerization, J. Polym. Environ., (2018).
DOI: 10.1007/s10924-018-1326-0
Google Scholar
[13]
А.V. Kremneva, L.G. Kolyada, А.P. Ponomarev, Production the polymeric and paper composites from packaging waste, Modern problems of science and education, 2 (2014) 124.
Google Scholar
[14]
N.P. Midukov, D.S. Efremov, V.S. Kurov, A.S. Smolin, The preparation of fibers for carboard production, Khimiya Rastitel'nogo Syr'ya, 3 (2018) 279-286.
DOI: 10.14258/jcprm.2018033698
Google Scholar
[15]
ISO 11357-1:2016 Plastics–Differential scanning calorimetry (DSC)–Part 1: General principles.
Google Scholar
[16]
ASTM E1252-98(2013) Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative Analysis.
Google Scholar
[17]
BS EN ISO 527-1:2012. Plastics. Determination of tensile properties. General principles.
Google Scholar
[18]
BS EN ISO 527-3:1995/Cor 2:2001. Plastics–Determination of tensile properties–Part 3: Test conditions for films and sheets.
Google Scholar
[19]
A. Zykova, P. Pantyukhov, A. Popov, Ethylene–octene copolymer–wood flour/oil flax straw biocomposites: Effect of filler type and content on mechanical properties, Polym. Eng. Sci., 57 (2017) 756-763.
DOI: 10.1002/pen.24626
Google Scholar
[20]
ISO 1133:2005 Plastics-Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR) of thermoplastics.
DOI: 10.3403/30023046
Google Scholar