[1]
S.V. Digonskiy, Gazofaznyye protsessy sinteza i spekaniya tugoplavkikh veshchestv, Moscow: GEOS, (2013).
Google Scholar
[2]
A.M. Arnoldinavan Veggel, The Basic Angle Monitoring system: picometer stability with Silicon Carbide optics, Copyright (2007).
Google Scholar
[3]
G.S. Gupta, P. Vasanth Kumar, V.R. Rudolph and M. Gupta, Heat-Transfer Model for the Acheson Process, Zeitschriftenartikelaus Metallurgical and Materials Transactions. A (2001-06), p.1301–1308.
DOI: 10.1007/s11661-001-0220-9
Google Scholar
[4]
V.A. Alferov, Teplovyye poteri s poverkhnosti pechey pri poluchenii karbida kremniya, Abrazivy. 4 (1952) 14-18.
Google Scholar
[5]
V.A. Rybakov, V.V. Karlin, V.M. Vityugin, V.A. Prokhorovich, Puti dal'neyshego razvitiya proizvodstva karbida kremniya, Abrazivy. 5 (1963) 1-3.
Google Scholar
[6]
I.S. Kats, Obrazovaniye karbida kremniya v promyshlennoy pechi elek-trosoprotivleniya, Abrazivy. 3 (1970) 18-23.
Google Scholar
[7]
L.Y. Markovskiy, D.L. Orshanskiy, V.P. Pryanishnikov, Khimicheskaya elektrotermiya, Leningrad: Gosudarstvennoye nauchno-tekhnicheskoye izdatel'stvo khimicheskoy literatury, (1952).
Google Scholar
[8]
A.S. Polubelova, V.N. Krylov, V.V. Karlin, I.S. Yefimova, Proizvodstvo abrazivnykh materialov, Leningrad: Mashinostroyeniye, (1968).
Google Scholar
[9]
G.G. Gnesin, Karbidokremniyevyye materialy, Moscow: Metallurgiya, (1977).
Google Scholar
[10]
I.S. Kaynarskiy, E.V. Degtyareva, Karborundovyye ogneupory, Khar'kov, (1963).
Google Scholar
[11]
A.S. Berezhnoy, Kremniy i yego binarnyye sistemy, Kiyev: Izd. AN USSR, (1959).
Google Scholar
[12]
M.V. Kamentsev, Iskustvennyye abrazivnyye materialy, Moscow, (1950).
Google Scholar
[13]
V.S. Kuzevanov, G.S. Zakozhurnikova, Model' sushki poristogo pronitsayemogo materiala pri vnutrennem nagreve, Al'ternativnaya energetika i ekologiya, 14 (2013)19-24.
Google Scholar
[14]
A.F. Chudnovskiy, Teploobmen v dispersnykh sredakh, Moscow: Izdatel'stvo tekhniko-teoreticheskoy literatury, (1954).
Google Scholar
[15]
A.F. Chudnovskiy, Teplofizicheskiye kharakteristiki dispersnykh materialov, Moscow: Fizmatgiz, (1962).
Google Scholar
[16]
A.V. Lykov, Teplomassoobmen: Spravochnik, Mocsow: Energiya, (1978).
Google Scholar
[17]
L.L. Vasil'yev, S.A. Tanayeva, Teplofizicheskiye svoystva poristykh materialov, Minsk: Nauka i tekhnika, (1971).
Google Scholar
[18]
V.S. Kuzevanov, G.S. Zakozhurnikova, Obshchaya model' dlya rascheta polya davleniya v poristoysrede s reagiruyushchimi komponentami, Izvestiya VolgGTU. Seriya Protsessy preobrazovaniya energii i energeticheskiye ustanovki, 18 №6 (145) (2014) 106-110.
Google Scholar
[19]
V.S. Kuzevanov, G.S. Zakozhurnikova, S.S. Zakozhurnikov, Model' teplomassoperenosa v pechakh pri proizvodstve karbida kremniya, Al'ternativnaya energetika i ekologiya, 7 (2015) 75-81.
Google Scholar
[20]
V.S. Kuzevanov, A.B. Garyayev, S.S. Zakozhurnikov, G.S. Zakozhurnikova, Modeli protsessov i raschet temperaturnogo polya v pechi soprotivleniya dlya proizvodstva karbida kremniya, Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta, Ivanovo, 4 (2017) 21-29.
Google Scholar
[21]
G.S. Zakozhurnikova, Povysheniye energeticheskoy effektivnosti proizvodstva karbida kremniya na osnove modelirovaniya plavil'nogo protsessa, (2015).
Google Scholar
[22]
S.S. Zakozhurnikov, Sovershenstvovaniye protsessa proizvodstva karbida kremniya putem izmeneniya organizatsii podvoda teploty, (2016).
Google Scholar