Activity of Zinc Oxide Based Spinels Catalytic

Article Preview

Abstract:

Comparative assessment of phase formation in the system ZnO-CeO2-Fe2O3-Cr2O3, obtained using a number of technological methods, is carried out. Spinel phase formation is established for all materials studied, except ZnO-CeO2. Synthesized materials are examined with X-ray phase analysis, low-temperature nitrogen adsorption, and scanning electron microscopy. It is shown that the synthesis in the presence of an organic precursor allows obtaining fine spinel samples. High catalytic activity of the synthesized materials, containing the spinel phase, is established in the process of methyl orange oxidative destruction in the presence of hydrogen peroxide. It is proved that with an increase in the number of chromium cations in the sample, the catalytic activity of the materials also increases. Zinc ferrite, despite the considerably more developed surface, and ZnO /CeO2 are not very effective in this process. The data obtained is useful for the development of materials for wastewater treatment at industrial enterprises, which use organic dyes in their production cycles.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

8-13

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yu. Yao, Ji. Qin, H. Chen, F. Wei, X. Liu, Ji. Wang, S. Wang, One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants, J. of Hazardous Mat. 291 (2015) 28-37.

DOI: 10.1016/j.jhazmat.2015.02.042

Google Scholar

[2] Jin R. Jin, H. Liu, Ya. Guan, Ju. Zhou, G. Chen, ZnFe2O4/C nano discs as high performance anode material for lithium-ion batteries, Mat. Lett. 158 (2015) 218-221.

DOI: 10.1016/j.matlet.2015.06.030

Google Scholar

[3] X. Zhou, Ji. Liu, C. Wang, P. Sun, X. Hu, X. Li, K. Shimanoe, N. Yamazoe, G. Lu, Highly sensitive acetone gas sensor based on porous ZnFe2O4 nanospheres, Sensors and Actuators B. 206 (2015) 577-583.

DOI: 10.1016/j.snb.2014.09.080

Google Scholar

[4] T. Ono, D. Oharu, S. Kobayashi, H. Yamada, S. Takita, M. Maeda, K. Takase, Y. Takano, T. Watanabe, Element substitution effects on magnetic properties of spin-frustrated spinel Znb2O4 (B = Cr and Fe), Solid State Phenomena 257 (2017) 111-114.

DOI: 10.4028/www.scientific.net/ssp.257.111

Google Scholar

[5] M.R.M. Shafiee, M. Sadeghian, M. Kargar, ZnFe2O4-Fe2O3-CeO2 composite nanopowder: Preparation, magnetic properties, and 4-chlorophenol removal characterizations, Ceramics International 43, Issue 16 (2017) 14068-14073.

DOI: 10.1016/j.ceramint.2017.07.142

Google Scholar

[6] Z. Krysieki, T. Lubanska, Effect of the presintering process on the microstructure and initial permeability of Mn–Zn ferrite, J. Magn. and Magn. Mater. 1-3 (1980) 107-108.

Google Scholar

[7] M. Ajmal, A. Maqsood, Influence of zinc substitution on structural and electrical properties of Ni1-xZnxFe2O4 ferrites, Mat. Science and Engineering B. 139 (2007) 164–170.

DOI: 10.1016/j.mseb.2007.02.004

Google Scholar

[8] S.S. Kumbhar, M.A. Mahadik, S.S. Shinde, K.Y. Rajpure, C.H. Bhosale, Fabrication of ZnFe2O4 films and its application in photoelectrocatalytic degradation of salicylic acid, J. of Photochemistry and Photobiology B: Biology. 142 (2015) 118–123.

DOI: 10.1016/j.jphotobiol.2014.12.002

Google Scholar

[9] Z. Xu, S. Gu, S. Huang, K. Tang, Ji. Ye, S. Zhu, M. Xu, Yo Zheng, Structure and properties of Fe3O4 films grown on ZnO template via metal organic chemical vapor deposition. J. of Magnetism and Magnetic Mat. 385 (2015) 257–264.

DOI: 10.1016/j.jmmm.2015.03.018

Google Scholar

[10] P. Priyadharsini, A. Pradeep, G. Chandrasekaran, Novel combustion route of synthesis and characterization of nanocrystalline mixed ferrites of Ni–Zn, J. of Magnetism and Magnetic Mat. 321 (2009) 1898-1903.

DOI: 10.1016/j.jmmm.2008.12.005

Google Scholar

[11] Ja,Y. Patil, D.Y. Nadargi, Jy.L. Gurav, I.S. Mulla, S.S. Suryavanshi, Glycine combusted ZnFe2O4 gas sensor: Evaluation of structural morphological and gas response properties, Cer. Intern. 40 (2014) 10607-10613.

DOI: 10.1016/j.ceramint.2014.03.041

Google Scholar

[12] S.M. Masoudpanah, S.A.S. Ebrahimi, M. Derakhshani, S.M. Mirkazemi, Structure and magnetic properties of La substituted ZnFe2O4 nanoparticles synthesized by sol–gel autocombustion method, J. of Magnetism and Magnetic Mat. 370 (2014) 122-126.

DOI: 10.1016/j.jmmm.2014.06.062

Google Scholar

[13] S.A. Hosseini, M.C. Alvarez-Galvan, J.L.G. Fierro, A. Niaei, D. Salari, MCr2O4 (M=Co, Cu and Zn) nanospinels for 2-propanol combustion: Correlation of structural properties with catalytic performance and stability, Cer. Intern. 39 (2013) 9253-9261.

DOI: 10.1016/j.ceramint.2013.05.033

Google Scholar

[14] E.R. Kumar, T. Arunkumar, T. Prakash, Heat treatment effects on structural and dielectric properties of Mn substituted CuFe2O4 and ZnFe2O4 nanoparticles, Superlattices and Microstructures. 85 (2015) 530-535.

DOI: 10.1016/j.spmi.2015.06.016

Google Scholar

[15] X. Zhu, F. Zhang, M. Wang, Ji. Ding, S. Sun, Ju.Bao, C. Gao, Facile synthesis, structure and visible light photocatalytic activityof recyclable ZnFe2O4/TiO2, Applied Surface Science. 319 (2014) 83-89.

DOI: 10.1016/j.apsusc.2014.07.051

Google Scholar

[16] R. Zhang, X. Yang, D. Zhang, H. Qiu, Q. Fu, H. Na, Z. Guo, F. Du, G. Chen, Yi. Wei, Water soluble styrene butadiene rubber and sodium carboxyl methyl cellulose binder for ZnFe2O4 anode electrodes in lithium ion batteries, J. of Power Sources. 285 (2015) 227-234.

DOI: 10.1016/j.jpowsour.2015.03.100

Google Scholar

[17] A. Shanmugavani, R. KalaiSelvan, S. Layek, C. Sanjeeviraja, Size dependent electrical and magnetic properties of ZnFe2O4 nanoparticles synth esized by the combustion method: Comparison between aspartic acid and glycine as fuel, J. of Magnetism and Magnetic Mat. 354 (2014) 363-371.

DOI: 10.1016/j.jmmm.2013.11.018

Google Scholar

[18] M. Zhao, S. Fan, Ji.Liang, Yi. Liun, Yi. Li, Ji. Chen, S. Chen, Synthesis of mesoporous grooved ZnFe2O4 nano belts as peroxidase mimetics for improved enzymatic biosensor, Cer. Intern. 41 (2015) 10400-10405.

DOI: 10.1016/j.ceramint.2015.04.080

Google Scholar

[19] F. Mueller, D. Bresser, E. Paillard, M. Winter, S. Passerini, Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles, J. of Power Sources. 236 (2013) 87-94.

DOI: 10.1016/j.jpowsour.2013.02.051

Google Scholar

[20] A. Esmaeili, N.A. Hadad, Preparation of ZnFe2O4–chitosan-doxorubicin hydrochloride nanoparticles and investigation of their hyperthermic heat-generating characteristics, Cer. Intern. 41 (2015) 7529-7535.

DOI: 10.1016/j.ceramint.2015.02.075

Google Scholar

[21] N. Kumari, V. Kumar, S.K. Singh, Effect of Cr3+ substitution on properties of nano-ZnFe2O4, J. of Alloys and Compounds. 622 (2015) 628-634.

DOI: 10.1016/j.jallcom.2014.10.083

Google Scholar

[22] O.V. Yelenich, S.O. Solopan, T.V. Kolodiazhnyi, V.V. Dzyublyuk, A.I. Tovstolytkin, A.G. Belous, Magnetic properties and high heating efficiency of ZnFe2O4 nanoparticles, Mat. Chem. and Physics. 146 (2014) 129-135.

DOI: 10.1016/j.matchemphys.2014.03.010

Google Scholar

[23] L. Liu, A. Han, M. Ye, W. Feng, , The evaluation of thermal performance of cool coatings colored with high near-infrared reflective nano-brown inorganic pigments: Magnesium doped ZnFe2O4 compounds, Solar Energy. 113 (2015) 48-56.

DOI: 10.1016/j.solener.2014.12.034

Google Scholar

[24] N.P. Shabel'skaya, V.V. Ivanov, V.M. Talanov, L.A. Reznichenko, M.V Talanov, A.K. Ul'yanov, Synthesis and phase formation in the system NiO-CuO-Fe2O3-Cr2O3, Glass and Ceramics. 71 (2014), Nos. 1-2, 18-22.

DOI: 10.1007/s10717-014-9607-0

Google Scholar

[25] V.M. Chernyshev, N.P. Shabelskaya, Comparative analysis of catalytic activity in complex NiO-CuO-Fe2O3-Cr2O3 oxide system of different production technologies, Materials Science Forum. 870 (2016) 118-122.

DOI: 10.4028/www.scientific.net/msf.870.118

Google Scholar

[26] N.P. Shabelskaya, Synthesis and Properties of Binary Spinels in a NiO-CuO-Fe2O3-Cr2O3 System, Glass Physics and Chemistry. 43 (2017), Is. 1, 240-245.

DOI: 10.1134/s1087659617030129

Google Scholar

[27] N.P. Shabel'skaya, Phase Formation Processes in the NiO – CuO – Fe2O3 – Cr2O3 System upon Salt Decomposition, Inorganic Mat. 50 (2014), No. 11, 1114-1118.

DOI: 10.1134/s002016851411017x

Google Scholar