[1]
M.L. Kerber, V.M. Vinogradov, G.S. Golovkin et al. Polymeric Composite Materials: Structure, Properties, Technology, Profession, Petersburg, (2009).
Google Scholar
[2]
S.L. Bazhenov, A.A. Berlin, A.A. Kulkov, V.G. Oshmyan, Polymeric composite materials. Durability and technology, Intellect publishing house, Moscow, (2009).
Google Scholar
[3]
M. Xanthos, Functional Fillers for Plastics, Weinheim, (2010).
Google Scholar
[4]
Yu.A. Mikhaylin, Special polymeric composite materials, Publishing House Scientific Foundations and Technologies, Moscow, (2009).
Google Scholar
[5]
H.S. Katz, J.V. Milewski, Handbook of Fillers and Reinforcements for Plastics, Academic Press, New York, (1978).
Google Scholar
[6]
M. Richardson, Promyshlennye polymernye kompozytsyonnye materyaly [Industrial polymer composite materials], Khimiia, Moscow, (1980).
Google Scholar
[7]
L.G. Panova, Fillers for polymeric composites, Sarat. state tech. univ., Saratov, (2002).
Google Scholar
[8]
D.J. Whiteman, C. Agra-Gutierrez, M.J. Bird, S.E. Thomas, D.R. Skuse, D.M. Ansari, The Influence of Engineered Calcium Carbonate Functional Additives on the Mechanical Properties and Value Proposition of Polyethylene Films, Polymer Composites. 9 (2011) 743-751.
DOI: 10.1177/096739111101900904
Google Scholar
[9]
Yu.B. Kulikova, L.G. Panova, S.E. Artemenko, Epoxy compositions with specific properties, Chemical fibers. 5 (1997) 48-51.
Google Scholar
[10]
X. Zhang, X.H. Haryono, K. Xia, Natural polymer biocomposites produced from processing raw woodflour by severe shear deformation, Carbohydrate Polymers. 113 (2014) 46-52.
DOI: 10.1016/j.carbpol.2014.06.076
Google Scholar
[11]
C. Papaspyrid, T. Duvis, Transition properties of pretreated asbestos-filled epoxy polymers, Materials Chemistry and Physics. 17 (1987) 531-540.
DOI: 10.1016/0254-0584(87)90012-5
Google Scholar
[12]
V.E. Samorokov, E.V. Zelinskaya, Using microspheres in composite materials, Vestnik of Irkutsk state technical University. 9 (2012) 201-205.
Google Scholar
[13]
A.E. Burdonov, V.V. Barakhtenko, E.V. Zelinskaya, E.O. Suturin, A.V. Burdonova, A.V. Golovkina, Physic-mechanical characteristics of composite materials based on production waste with different formulations, Engineering and Construction Journal. 9 (2012) 14-22.
DOI: 10.5862/mce.35.2
Google Scholar
[14]
L.Ya. Kizilshtein, I.V. Dubov, A.L. Shpitsgluz, S.P. Parada, Components of ashes and slag TPP, Energoatomizdat, Moscow, (1995).
Google Scholar
[15]
V.S. Drozhzhin, M.Ya. Shpirt, L.D. Danilin, M.D. Kuvaev, I.V. Nikulin, G.A. Potemkin, S.A. Redyushev, The processes of formation and the basic properties of hollow aluminosilicate microspheres in fly-ashes of thermal power plants, Chemistry of a solid. 2 (2008) 53-66.
DOI: 10.3103/s0361521908020110
Google Scholar
[16]
T.A. Vereshchagin, N.N. Anshits, I.D. Zykova, A.N. Salanov, A.A. Tretyakov, A.G. Anshits, Obtaining cenospheres from energy evils of stabilized composition and their properties, Chemistry for Sustainable Development. 9 (2001) 379-391.
Google Scholar
[17]
L.P. Varlamova, V.A. Izvochikova, S.A. Ryabov, A.S. Averchenko, Yu.D. Semchikov, The effect of aluminosilicate microspheres on the physicomechanical and rheological properties of rigid polyurethane foams, Journal of Applied Chemistry. 3 (2008) 502-504.
DOI: 10.1134/s1070427208030294
Google Scholar
[18]
D.O. Bondarenko, V.V. Strokova, T.I. Timoshenko, I.V. Rozdolskaya, Plasma-chemical modification of a facing composite material based on hollow glass microspheres with a protective-decorative coating, Prospective materials. 8 (2018) 72-80.
DOI: 10.1134/s2075113319020072
Google Scholar
[19]
O.M. Sharonov, T.A. Vereshchagin, N.N. Anshits, A.G. Anshits, Isolation of microspherical components of stabilized composition from energy evils and the development of new materials on their basis, Engineering technology. 1 (2003) 66-75.
Google Scholar
[20]
Russian Standard 8736-2014, Sand for construction work. Technical conditions, Moscow.
Google Scholar
[21]
Building codes 525-80. Instructions on the technology of preparation of polymer concrete and products based on them. Moscow.
Google Scholar
[22]
Russian Standard 10181-2014, Concrete mixes. Test methods, Moscow.
Google Scholar
[23]
Russian Standard 10180-2012. Concretes. Methods for determining the strength of the control samples, Moscow.
Google Scholar