[1]
Information on http://digitalconcrete2018.ethz.ch/.
Google Scholar
[2]
D. Lowkea, E. Dinib, A. Perrotc, D. Wegerd, C. Gehlend and B. Dillenburger, Particle-bed 3D printing in concrete construction – Possibilities and challenges, Cement and Concrete Research. 112 (2018) 50-65.
DOI: 10.1016/j.cemconres.2018.05.018
Google Scholar
[3]
N. Roussel, Rheological requirements for printable concretes, Cement and Concrete Research. 112 (2018) 76-85.
DOI: 10.1016/j.cemconres.2018.04.005
Google Scholar
[4]
H.V. Damme, Concrete material science: Past, present, and future innovations, Cement and Concrete Research 112 (2018) 5-24.
DOI: 10.1016/j.cemconres.2018.05.002
Google Scholar
[5]
G. De Schuttera, K. Lesagea, V. Mechtcherineb, V.N. Nerellab, G. Habertc and I. Agusti-Juanc, Vision of 3D printing with concrete – Technical, economic and environmental potentials, Cement and Concrete Research. 112 (2018) 25-36.
DOI: 10.1016/j.cemconres.2018.06.001
Google Scholar
[6]
D. Marchon, S. Kawashima, H. Bessaies-Bey, S. Mantellato and Serina Ng, Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry, Cement and Concrete Research. 112 (2018) 96-110.
DOI: 10.1016/j.cemconres.2018.05.014
Google Scholar
[7]
Hager, I., A. Golonka and R. Putanowicz, 2016. 3D printing of buildings and building components as the future of sustainable construction. Procedia Engineering, 151: 292-299.
DOI: 10.1016/j.proeng.2016.07.357
Google Scholar
[8]
D. Asprone, C. Menna, F.P. Bos, Theo A.M. Salet, J. Mata-Falcón and W. Kaufmann, Rethinking reinforcement for digital fabrication with concrete, Cement and Concrete Research. 112 (2018) 111-121.
DOI: 10.1016/j.cemconres.2018.05.020
Google Scholar
[9]
R.A. Buswell, W.R. Leal de Silva, S.Z. Jones, J. Dirrenberger, 3D printing using concrete extrusion: A roadmap for research, Cement and Concrete Research. 112 (2018) 37-49.
DOI: 10.1016/j.cemconres.2018.05.006
Google Scholar
[10]
I.V. Borovskikh, High-Strength Fine-Grained Basalt Fibrous Concrete: Cand. Tech. Sci. 05.23.05, Kazan, (2009).
Google Scholar
[11]
V.S. Sevostyanov, V.I. Uralsky, I.P. Boychuk, D.N. Perelygin and R.A. Ermilov, Technological System and Units for Manufacturing of Fine and Ultrafine Materials, Transactions TSTU. 23(4) (2017) 680-687.
DOI: 10.17277/vestnik.2017.04.pp.680-687
Google Scholar
[12]
V.A. Poluektova, N.A. Shapovalov and E.I. Evtushenko, Nano-modified polymer solution for additive technologies, International Journal of Pharmacy & Technology. 8 (4) (2016) 24930-24937.
Google Scholar
[13]
V.A. Poluektova, N.A. Shapovalov, Superplasticizer based on phloroglucinol furfural oligomers for water mineral suspensions: monograph, BSTU, Belgorod, (2012).
Google Scholar
[14]
V.A. Poluektova, N.A. Shapovalov, R.O. Chernikov and E.I. Evtushenko, Patent RU 2661970, (2018).
Google Scholar
[15]
A.E. Kozlovsky, V.V. Boitsova Mechanical Properties of Materials. Methods of Tests: Laboratory Practical Course, Ivanovo, (2007).
Google Scholar
[16]
K.N. Popov, Polymer, polymer cement concretes, solutions and mastics, Moscow: High School, (1987).
Google Scholar
[17]
Concrete Admixtures Handbook, Edited by: V.S. Ramachandran, 2nd Ed.: Properties, Science, and Technology, (1996).
Google Scholar
[18]
V.S. Izotov, Yu.A. Sokolova, Chemical Additives for Concrete Modification: monograph, Moscow: Paleotip publishing house, (2006).
Google Scholar
[19]
N. Vatin, L. Chumadova, I. Goncharov, V. Zykova, A. Karpenya, A. Kim and E. Finashenkov, 2017. 3D printing in construction. Construction of Unique Buildings and Structures, 1(52) 27-46.
Google Scholar
[20]
I.F. Efremov, Dilatancy of Colloidal Structures and Polymer Solutions, Achievements of Chemistry. 51(2) (1982) 285-310.
Google Scholar