[1]
R. C. Pullar. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mat. Sci., 57 (2012) 1191-1334.
DOI: 10.1016/j.pmatsci.2012.04.001
Google Scholar
[2]
D.A. Vinnik, I.A. Ustinova, A.B. Ustinov, S.A. Gudkova, D.A. Zherebtsov, E.A. Trofimov, N.S. Zabeivorota, G.G. Mikhailov, R.Niewa, Millimeter-wave Characterization of Aluminum Substituted Barium Lead Hexaferrite Single Crystals Grown from PbO–B2O3 Flux, Ceram. Int. 17 (2017) 15800-15804.
DOI: 10.1016/j.ceramint.2017.08.145
Google Scholar
[3]
D.A. Vinnik, A.B. Ustinov, D.A. Zherebtsov, V.V. Vitko, S.A. Gudkova, I. Zakharchuk, E. Lähderanta, R. Niewa, Structural and Millimeter-wave Characterization of Flux Grown Al Substituted Barium Hexaferrite Single Crystals, Ceram. Int. 41(10) ( 2015) 12728-12733.
DOI: 10.1016/j.ceramint.2015.06.105
Google Scholar
[4]
S. Nemrava, D.A. Vinnik, Z. Hu, M.Valldor, C.-Y. Kuo, D.A. Zherebtsov, S.A. Gudkova, C.-T. Chen, L.H. Tjeng, R.Niewa, Three Oxidation States of Manganese in the Barium Hexaferrite BaFe12-xMnxO19, Inorg. Mat. 56 (2017) 3861-3866.
DOI: 10.1021/acs.inorgchem.6b02688
Google Scholar
[5]
D.S. Klygach, M.G. Vakhitov, D.A. Vinnik, A.V. S.A. V.E. D.A. C.P. SakthiDharan, S.V. Trukhanov, A.V. Trukhanov, A.Y. Starikov, Measurement of permittivity and permeability of barium hexaferrite, J. Magn. Magn. Mat. 465 (2018) 290-294.
DOI: 10.1016/j.jmmm.2018.05.054
Google Scholar
[6]
L.A. Shlyk, D.A. Vinnik, D.A. Zherebtsov, Z. Hu, C.-Y. Kuo, C.-F. Chang, H.-J. Lin, L.-Y. Yang, A.S. Semisalova, N.S. Perov, T. Langer, R. Pottgen, S.Nemrava, R. Niewa, Single crystal growth, structural characteristics and magnetic properties of chromium substituted M -type ferrites, Sol.St. Sci. 50 (2015) 23-31.
DOI: 10.1016/j.solidstatesciences.2015.10.005
Google Scholar
[7]
A. D. Pogrebnyak, A. A. Bagdasaryan, I. V. Yakushchenko, V. M. Beresnev. The structure and properties of high-entropy alloys and nitride coatings based on them. Usp. Khim. Russ. Chem. Rev., 83(11) (2014) 1027–1061.
DOI: 10.1070/rcr4407
Google Scholar
[8]
M.-I. Lin, M.-H..Tsai, W.-J. Shen, J.-W. Yeh. Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films. Th. Sol. Films. 518 (2010) 2732-2737.
DOI: 10.1016/j.tsf.2009.10.142
Google Scholar
[9]
C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, J.-P. Maria. Entropy-stabilized oxides. Nat.Com. 6 (2015) 8485.
DOI: 10.1038/ncomms9485
Google Scholar
[10]
D. Berardan, S. Franger, A. K. Meena, N. Dragoe. Room temperature lithium superionic conductivity in high entropy oxides, J. Mat. Chem. A. 4 (2016) 9536-9541.
DOI: 10.1039/c6ta03249d
Google Scholar
[11]
Zs. Rak, C. M. Rost, M. Lim, P. Sarker, C. Toher, S. Curtarolo, J.-P. Maria, D. W. Brenner. Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations, J. App. Phys. 120(9) (2016) 095105.
DOI: 10.1063/1.4962135
Google Scholar
[12]
Ch. M. Rost, Z. Rak, D. W. Brenner, J.-P. Maria. Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy-stabilized oxide: An EXAFS study, J. Amer. Ceram. Soc. 100(6) (2017) 2732-2738.
DOI: 10.1111/jace.14756
Google Scholar
[13]
D. Berardan, A. K. Meena, S. Franger, C. Herrero, N. Dragoe. Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J. Al. Comp. 704 (2017) 693-700.
DOI: 10.1016/j.jallcom.2017.02.070
Google Scholar
[14]
A. Sarkar, C. Loho, L. Velasco, T. Thomas, S. S. Bhattacharya, H. Hahn, R. R. Djenadic. Multicomponent equiatomic rare earth oxides with narrow band gap and associated praseodymium multivalency. Dalt. Trans. 46(2017) 12167-12176.
DOI: 10.1039/c7dt02077e
Google Scholar
[15]
R. Djenadic, A. Sarkar, O. Clemens, Ch. Loho, M. Botros, V. S. K. Chakravadhanula, Ch. Kübel, S. S. Bhattacharya, A. S. Gandhi, H. Hahn. Multicomponent equiatomic rare earth oxides. Mat. Res. Lett. 5 (2017) 102-109.
DOI: 10.1080/21663831.2016.1220433
Google Scholar
[16]
S.Jiang, T. Hu , J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, J. Luo. A new class of high-entropy perovskite oxides. Scripta Mat. 142 (2018) 116-120.
DOI: 10.1016/j.scriptamat.2017.08.040
Google Scholar
[17]
A. Sarkar, R. Djenadic, D.Wang, Ch. Hein, R. Kautenburger, O. Clemens, H. Hahn. Rare earth and transition metal based entropy stabilized perovskite type oxides, J. Europ. Ceram. Soc. 38(5) (2018) 2318-2327.
DOI: 10.1016/j.jeurceramsoc.2017.12.058
Google Scholar
[18]
P. B. Meisenheimer, T. J. Kratofil, J. T. Heron. Giant Enhancement of Exchange Coupling in Entropy-Stabilized Oxide Heterostructures, Sci. Rep. 7 (2017) 13344.
DOI: 10.1038/s41598-017-13810-5
Google Scholar
[19]
G. Anand, A. P. Wynn, Ch. M. Handley, C. L. Freeman. Phase stability and distortion in high-entropy oxides, Acta Mat. 146 (2018) 119-125.
DOI: 10.1016/j.actamat.2017.12.037
Google Scholar
[20]
Ch.-H. Tsau, Zh.-Y. Hwang, S.-K. Chen. The Microstructures and Electrical Resistivity of (Al, Cr, Ti)FeCoNiOx High-Entropy Alloy Oxide Thin Films. Adv. Mat. Sci. Eng. 2015 (2015) 353140.
DOI: 10.1155/2015/353140
Google Scholar
[21]
J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, M. Martin. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure. Mat. Lett. 216 (2018) 32-36.
DOI: 10.1016/j.matlet.2017.12.148
Google Scholar