The Conditions and Results of Ferrite Based on Multicomponent Crystal Formation in High Entropic Oxide Systems

Article Preview

Abstract:

High-entropic magneto-plum-bite structured crystal phases were theoretically calculated and then prepared by solid state synthesis. The compositions and formation conditions for by-product, such as spinel structured multicomponent crystals, that had not been previously described in literature, were analyzed. The list of elements which can be the main components of such phases was defined. Important conclusions about the conditions for growing high-entropy crystals from melts were made. Particularly, it was shown that the obligatoriness for additional oxidation of the melt should be taken into account (relative to the level that the composition of the melt itself and the process atmosphere can provide).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

246-251

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. C. Pullar. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mat. Sci., 57 (2012) 1191-1334.

DOI: 10.1016/j.pmatsci.2012.04.001

Google Scholar

[2] D.A. Vinnik, I.A. Ustinova, A.B. Ustinov, S.A. Gudkova, D.A. Zherebtsov, E.A. Trofimov, N.S. Zabeivorota, G.G. Mikhailov, R.Niewa, Millimeter-wave Characterization of Aluminum Substituted Barium Lead Hexaferrite Single Crystals Grown from PbO–B2O3 Flux, Ceram. Int. 17 (2017) 15800-15804.

DOI: 10.1016/j.ceramint.2017.08.145

Google Scholar

[3] D.A. Vinnik, A.B. Ustinov, D.A. Zherebtsov, V.V. Vitko, S.A. Gudkova, I. Zakharchuk, E. Lähderanta, R. Niewa, Structural and Millimeter-wave Characterization of Flux Grown Al Substituted Barium Hexaferrite Single Crystals, Ceram. Int. 41(10) ( 2015) 12728-12733.

DOI: 10.1016/j.ceramint.2015.06.105

Google Scholar

[4] S. Nemrava, D.A. Vinnik, Z. Hu, M.Valldor, C.-Y. Kuo, D.A. Zherebtsov, S.A. Gudkova, C.-T. Chen, L.H. Tjeng, R.Niewa, Three Oxidation States of Manganese in the Barium Hexaferrite BaFe12-xMnxO19, Inorg. Mat. 56 (2017) 3861-3866.

DOI: 10.1021/acs.inorgchem.6b02688

Google Scholar

[5] D.S. Klygach, M.G. Vakhitov, D.A. Vinnik, A.V. S.A. V.E. D.A. C.P. SakthiDharan, S.V. Trukhanov, A.V. Trukhanov, A.Y. Starikov,  Measurement of permittivity and permeability of barium hexaferrite, J. Magn. Magn. Mat. 465 (2018) 290-294.

DOI: 10.1016/j.jmmm.2018.05.054

Google Scholar

[6] L.A. Shlyk, D.A. Vinnik, D.A. Zherebtsov, Z. Hu, C.-Y. Kuo, C.-F. Chang, H.-J. Lin, L.-Y. Yang, A.S. Semisalova, N.S. Perov, T. Langer, R. Pottgen, S.Nemrava, R. Niewa, Single crystal growth, structural characteristics and magnetic properties of chromium substituted M -type ferrites, Sol.St. Sci. 50 (2015) 23-31.

DOI: 10.1016/j.solidstatesciences.2015.10.005

Google Scholar

[7] A. D. Pogrebnyak, A. A. Bagdasaryan, I. V. Yakushchenko, V. M. Beresnev. The structure and properties of high-entropy alloys and nitride coatings based on them. Usp. Khim. Russ. Chem. Rev., 83(11) (2014) 1027–1061.

DOI: 10.1070/rcr4407

Google Scholar

[8] M.-I. Lin, M.-H..Tsai, W.-J. Shen, J.-W. Yeh. Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films. Th. Sol. Films. 518 (2010) 2732-2737.

DOI: 10.1016/j.tsf.2009.10.142

Google Scholar

[9] C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, J.-P. Maria. Entropy-stabilized oxides. Nat.Com. 6 (2015) 8485.

DOI: 10.1038/ncomms9485

Google Scholar

[10] D. Berardan, S. Franger, A. K. Meena, N. Dragoe. Room temperature lithium superionic conductivity in high entropy oxides, J. Mat. Chem. A. 4 (2016) 9536-9541.

DOI: 10.1039/c6ta03249d

Google Scholar

[11] Zs. Rak, C. M. Rost, M. Lim, P. Sarker, C. Toher, S. Curtarolo, J.-P. Maria, D. W. Brenner. Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations, J. App. Phys. 120(9) (2016) 095105.

DOI: 10.1063/1.4962135

Google Scholar

[12] Ch. M. Rost, Z. Rak, D. W. Brenner, J.-P. Maria. Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy-stabilized oxide: An EXAFS study, J. Amer. Ceram. Soc. 100(6) (2017) 2732-2738.

DOI: 10.1111/jace.14756

Google Scholar

[13] D. Berardan, A. K. Meena, S. Franger, C. Herrero, N. Dragoe. Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J. Al. Comp. 704 (2017) 693-700.

DOI: 10.1016/j.jallcom.2017.02.070

Google Scholar

[14] A. Sarkar, C. Loho, L. Velasco, T. Thomas, S. S. Bhattacharya, H. Hahn, R. R. Djenadic. Multicomponent equiatomic rare earth oxides with narrow band gap and associated praseodymium multivalency. Dalt. Trans. 46(2017) 12167-12176.

DOI: 10.1039/c7dt02077e

Google Scholar

[15] R. Djenadic, A. Sarkar, O. Clemens, Ch. Loho, M. Botros, V. S. K. Chakravadhanula, Ch. Kübel, S. S. Bhattacharya, A. S. Gandhi, H. Hahn. Multicomponent equiatomic rare earth oxides. Mat. Res. Lett. 5 (2017) 102-109.

DOI: 10.1080/21663831.2016.1220433

Google Scholar

[16] S.Jiang, T. Hu , J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, J. Luo. A new class of high-entropy perovskite oxides. Scripta Mat. 142 (2018) 116-120.

DOI: 10.1016/j.scriptamat.2017.08.040

Google Scholar

[17] A. Sarkar, R. Djenadic, D.Wang, Ch. Hein, R. Kautenburger, O. Clemens, H. Hahn. Rare earth and transition metal based entropy stabilized perovskite type oxides, J. Europ. Ceram. Soc. 38(5) (2018) 2318-2327.

DOI: 10.1016/j.jeurceramsoc.2017.12.058

Google Scholar

[18] P. B. Meisenheimer, T. J. Kratofil, J. T. Heron. Giant Enhancement of Exchange Coupling in Entropy-Stabilized Oxide Heterostructures, Sci. Rep. 7 (2017) 13344.

DOI: 10.1038/s41598-017-13810-5

Google Scholar

[19] G. Anand, A. P. Wynn, Ch. M. Handley, C. L. Freeman. Phase stability and distortion in high-entropy oxides, Acta Mat. 146 (2018) 119-125.

DOI: 10.1016/j.actamat.2017.12.037

Google Scholar

[20] Ch.-H. Tsau, Zh.-Y. Hwang, S.-K. Chen. The Microstructures and Electrical Resistivity of (Al, Cr, Ti)FeCoNiOx High-Entropy Alloy Oxide Thin Films. Adv. Mat. Sci. Eng. 2015 (2015) 353140.

DOI: 10.1155/2015/353140

Google Scholar

[21] J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, M. Martin. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure. Mat. Lett. 216 (2018) 32-36.

DOI: 10.1016/j.matlet.2017.12.148

Google Scholar