Simple Universal Kelvin Equation Valid in Critical Point Vicinity, External-Internal State Correction, and their Application in Understanding of Oxygen Capillary Evaporation and Condensation in Mesoporous Silica MCM-41

Article Preview

Abstract:

A new simple universal form of the Kelvin equation, which can be used near the gas-liquid phase transition critical point, and the correction of the pressure and density for gas phase fluid outside the porous medium are taken into account for the oxygen meniscus effective curvature radius calculation at the phase equilibrium in mesoporous silica MCM-41, on the basis of the capillary evaporation and condensation experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

270-274

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Barsotti, S. P. Tan, S. Saraji, M. Piri, J.-H. Chen, A review on capillary condensation in nanoporous media: Implications for hydrocarbon recovery from tight reservoirs, Fuel, 184 (2016) 344-361.

DOI: 10.1016/j.fuel.2016.06.123

Google Scholar

[2] V.G. Arakcheev, A.A. Valeev, V.B. Morozov, A.N. Olenin, CARS diagnostics of molecular media under nanoporous confinement, Laser Physics, 18 (2008) 1451-1458.

DOI: 10.1134/s1054660x08120128

Google Scholar

[3] V.G. Arakcheev, S.A. Dubyanskiy, V.B. Morozov, A.N. Olenin, V.G. Tunkin, A.A. Valeev, D.V. Yakovlev, V.N. Bagratashvili, V.K. Popov, Vibrational line shapes of liquid and subcritical carbon dioxide in nano-pores, Journal Of Raman Spectroscopy, 39 (2008) 750-755.

DOI: 10.1002/jrs.1974

Google Scholar

[4] V.G. Arakcheev, A.A. Valeev, V.B. Morozov, A.N. Olenin, D.V. Yakovlev, V.N. Bagratashvili, V.K. Popov, Spectral characteristics of subcritical carbon dioxide in nanopores, Russian Journal of Physical Chemistry B, 3 (2009) 1062-1066.

DOI: 10.1134/s1990793109070045

Google Scholar

[5] V. Arakcheev, V. Morozov, A. Valeev, CARS diagnostics of phase transitions of molecular media confined in nanopores, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, 2009, Article number 5196584.

DOI: 10.1109/cleoe-eqec.2009.5196584

Google Scholar

[6] V.G. Arakcheev, A.A. Valeev, V.B. Morozov, I.R. Farizanov, Phase behavior of the molecular medium in nanopores and vibrational spectra structure transformation, Moscow University Physics Bulletin, 66 (2011) 147-154.

DOI: 10.3103/s0027134911020032

Google Scholar

[7] O.V. Andreeva, V.G. Arakcheev, V.B. Morozov, A.A. Valeev, V.N. Bagratashvili, V.K. Popov, CARS diagnostics of fluid adsorption and condensation in small mesopores, Journal of Raman Spectroscopy, 42 (2011) 1747-1753.

DOI: 10.1002/jrs.2979

Google Scholar

[8] V.G. Arakcheev, A.N. Bekin, V.B. Morozov, CARS detection of liquid-like phase appearance in small mesopores, Laser Physics, 27 (2017) 115701.

DOI: 10.1088/1555-6611/aa8cd8

Google Scholar

[9] V.G. Arakcheev, A.N. Bekin, V.B. Morozov, Spectroscopic characterization of adsorbate confined in small mesopores: Distinction of first surface-adsorbed layer, polymolecular layers, and liquid clusters, Journal Of Raman Spectroscopy, 49 (2018) 1945-1952.

DOI: 10.1002/jrs.5491

Google Scholar

[10] H. Omi, B. Nagasaka, K. Miyakubo, T. Ueda, T. Eguchi, High-pressure 129Xe NMR study of supercritical xenon confined in the mesopores of FSM-16, Phys. Chem. Chem. Phys., 6 (2004) 1299-1303.

DOI: 10.1039/b314841f

Google Scholar

[11] M.A. Alam, A.P. Clarke, J.A. Duffy, Langmuir, 16 (2000) 7551-7553.

Google Scholar

[12] K. Morishige, Y. Nakamura, Nature of adsorption and desorption branches in cylindrical pores, Langmuir, 20 (2004) 4503-4506.

DOI: 10.1021/la030414g

Google Scholar

[13] A.A. Valeev, E.V. Morozova, Simple Universal Kelvin Equation Valid in Critical Point Vicinity and its Application to Carbon Dioxide Capillary Condensation in Mesoporous Silica, Solid State Phenomena, 265 (2017) 392-397.

DOI: 10.4028/www.scientific.net/ssp.265.392

Google Scholar

[14] A.A. Valeev, Simple Universal Kelvin Equation Valid in the Critical Point Vicinity, External-Internal State Correction, and their Application to Nitrogen Capillary Condensation in Mesoporous Silica MCM-41: submitted to Surface Review and Letters (2017).

DOI: 10.4028/www.scientific.net/ssp.299.270

Google Scholar

[15] A.A. Valeev, E.V. Morozova, Simple Universal Kelvin Equation Valid in the Critical Point Vicinity, External-Internal State Correction, and their Application to Nitrogen Capillary Condensation in Mesoporous Silica SBA-15, Solid State Phenomena, 284 (2018) 801-806.

DOI: 10.4028/www.scientific.net/ssp.284.801

Google Scholar

[16] A.A. Valeev, E.V. Morozova, Simple Universal Kelvin Equation Valid in Critical Point Vicinity, External-Internal State Correction, and their Application in Argon Capillary Condensation in Mesoporous Silica MCM-41, IOP Conf. Series: Earth and Environmental Science, 194 (2018) 042025.

DOI: 10.1088/1755-1315/194/4/042025

Google Scholar

[17] A.A. Valeev, Simple Kelvin equation applicable in the critical point vicinity, European Journal of Natural History, 5 (2014) 13-14.

DOI: 10.17513/ejnh.506-33335

Google Scholar

[18] R.C. Tolman, The effect of droplet size on surface tension, J. Chem. Phys., 17 (1949) 333-337.

Google Scholar

[19] S.P. Tan, M. Piri, Equation-of-state modeling of confined-fluid phase equilibria in nanopores, Fluid Phase Equilibr., 393 (2015) 48-63.

DOI: 10.1016/j.fluid.2015.02.028

Google Scholar

[20] R.B. Stewart, R.T. Jacobsen, W. Wagner, Thermodynamic Properties of Oxygen from the Triple Point to 300 K with Pressures to 80 MPa, J. Phys. Chem. Ref. Data, 20 (1991) 917-1021.

DOI: 10.1063/1.555897

Google Scholar

[21] R. Span, W. Wagner, Equations of State for Technical Applications. II. Results for Nonpolar Fluids, Int. J. Thermophys., 24 (2003) 41-109.

Google Scholar

[22] B.E. Poling, J.M. Prausnitz, J.P. O'Connell, The Properties of Gases and Liquids, fifth ed., McGraw-Hill, New York, (2001).

Google Scholar

[23] F. Cuadros, I. Cachadiña, W. Ahumada, Determination of Lennard-Jones Interaction Parameters Using a New Procedure, Molecular Engineering, 6 (1996) 319-325.

DOI: 10.1007/bf01886380

Google Scholar

[24] K. Morishige, M. Ito, Capillary condensation of nitrogen in MCM-41 and SBA-15, J. Chem. Phys., 117 (2002) 8036-8041.

DOI: 10.1063/1.1510440

Google Scholar

[25] R. Evans, U. Marini Bettolo Marconi, P. Tarazona, J. Chem. Phys., 84 (1986) 2376-2399.

Google Scholar

[26] R. Evans, U. Marini Bettolo Marconi, P. Tarazona, J. Chem. Soc. Faraday Trans., 82 (1986) 1763-1787.

Google Scholar

[27] P.I. Ravikovitch, S.C.Ó. Domhnail, A.V. Neimark, F. Schüth, K.K. Unger, Capillary Hysteresis in Nanopores: Theoretical and Experimental Studies of Nitrogen Adsorption on MCM-41, Langmuir, 11 (1995) 4765-4772.

DOI: 10.1021/la00012a030

Google Scholar

[28] A.V. Neimark, P.I. Ravikovitch, A. Vishnyakov, Adsorption Hysteresis in Nanopores, Phys. Rev. E, 62 (2000) R1493-R1496.

DOI: 10.1103/physreve.62.r1493

Google Scholar

[29] A. Vishnyakov, A.V. Neimark, Studies of Liquid-Vapor Equilibrium, Criticality and Spinodal Transitions in Nanopores by the Gauge Cell Monte Carlo Simulation Method, J. Phys. Chem. B, 105 (2001) 7009-7020.

DOI: 10.1021/jp003994o

Google Scholar

[30] G.S. Heffelfinger, F. van Swol, K.E. Gubbins, Adsorption hysteresis in narrow pores, J. Chem. Phys., 89 (1988) 5202-5205.

DOI: 10.1063/1.455610

Google Scholar

[31] U. Marini Bettolo Marconi, F. van Swol, Microscopic model for hysteresis and phase equilibria of fluids confined between parallel plates, Phys. Rev. A, 39 (1989) 4109-4116.

DOI: 10.1103/physreva.39.4109

Google Scholar

[32] A. Papandopulu, F. van Swol, U. Marini Bettolo Marconi, Pore-end effects on adsorption hysteresis in cylindrical and slitlike pores, J. Chem. Phys., 97 (1992) 6942-6952.

DOI: 10.1063/1.463648

Google Scholar